
Computer Science and Engineering  College of Engineering  The Ohio State University

JavaScript:
DOM and Events

Lecture 26

Computer Science and Engineering  The Ohio State University

Objects are Everywhere

 Global variables in JavaScript are a lie
 Implicitly part of some global object,

provided by execution environment
 See Developer Tools: Console

Computer Science and Engineering  The Ohio State University

Window Object
 For JavaScript running in a browser,

implicit global object is the window
>> this
<- Window

 The global object has properties, eg
 location (url of displayed document)
 history
 innerHeight, innerWidth
 sessionStorage
 alert(), prompt()
 document (tree of displayed document)

 For JavaScript in a different environment
(eg node.js), the global object is different

Computer Science and Engineering  The Ohio State University

Document is a Tree

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe

Computer Science and Engineering  The Ohio State University

Document is a Tree

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe

Computer Science and Engineering  The Ohio State University

DOM: “Document Object Model”
 DOM is a language-neutral API for

working with HTML (and XML) documents
 Different programming languages have

different bindings to this API
 But all are similar to JavaScript’s API

 In JavaScript, tree nodes  objects
 A tree node (an HTML element, or text node)

<input type="text" name="address">
 A JavaScript object with many properties

{ tagName: "INPUT",
type: "text",
name: "address", /* lots more… */ }

Computer Science and Engineering  The Ohio State University

DOM History
 Ad hoc DOM existed from the beginning of

JavaScript
 Core purpose of client-side execution: Enable user

interaction with the document
 Need a connection between programming language

(JavaScript) and the document
 DOM 1 specification (W3C) in '98

 Standardized mapping treeobjects and functions for
modifying the tree

 DOM 2 ('00): added styles and event handling
 DOM 3 ('04): fancier tree traversal & indexing

schemes
 DOM “4” ('15…):

 Actually just a “living document”
 Some non-backwards-compatible changes

Computer Science and Engineering  The Ohio State University

How to Find a Node in Tree
1. Hard coding with “flat” techniques
 Array of children

document.forms[0].elements[0]
 Downside: too brittle
 If the document structure changes a little,

everything breaks
2. Using an element's name attribute
 In HTML:

<form name="address"> …
<input name="zip"... /> </form>

 In JavaScript:
document.address.zip

 Downside: direct path still hard coded

Computer Science and Engineering  The Ohio State University

How to Find a Node in Tree
3. Using an element's id attribute
 In HTML

...
 In JavaScript

document.getElementById("shipping")
 Downside: element must have (unique) ID

4. Using a CSS selector
 Find one match or all matches

document.querySelector("#shipping");
document.querySelectorAll(".nav li");

 Search a subtree
elt.querySelector("tr"); // below elt

Computer Science and Engineering  The Ohio State University

Node is a JavaScript Object
 Properties
 parentNode, childNodes
 firstChild, lastChild, nextSibling,

previousSibling
 textContent

 Concatenation of text descendants (leaves)
 Read/write

 nodeType
 Tree nodes include elements, text, comments…

 nodeName
 "IMG", "TABLE", "FOOTER"… , or "#text"

 Methods
 appendChild(node), removeChild(node)
 replaceChild(new, old)

Computer Science and Engineering  The Ohio State University

Inheritance: Node/Element/Text

Computer Science and Engineering  The Ohio State University

Element (and HTMLElement)
 Properties
 tagName

 HTML upper case ("A"), XML lower case ("a")
 id, className
 attributes
 style

 Hyphenated property in CSS (“font-size”)
becomes camelCase in JavaScript (“fontSize”)

 innerHTML
 Methods
 hasAttribute(attr),

removeAttribute(attr),
getAttribute(attr), setAttribute(attr)

 insertAdjacentHTML(position, html)

Computer Science and Engineering  The Ohio State University

Demo: Web Console (Reading)
> let b = document.body;
> b.tagName; // 'BODY'
> b.childNodes; // a NodeList
> for (let n of b.childNodes) {

console.info(n.nodeName)
}

> b.style; // inspect css properties

> let x = document.querySelector("footer");
> x.innerHTML;
> x.childNodes;

Computer Science and Engineering  The Ohio State University

Demo: Web Console (Writing)
> let b = document.body;
> b.style.backgroundColor; //=> ""
> b.style.backgroundColor = "green";

> let x = document.querySelector("footer");

// bad
> x.innerHTML;
> x.innerHTML = "<h2>Hello</h2>";

//good
> let h = document.createElement("h2");
> h.className = "demo";
> h.textContent = "World";
> x.appendChild(h);

Computer Science and Engineering  The Ohio State University

Interactive Documents

 To make a document interactive, you
need:
 Widgets (ie HTML elements)
 Buttons, windows, menus, etc.

 Events
 Mouse clicked, window closed, button clicked,

etc.
 Event listeners
 Listen (ie wait) for events to be triggered,

and then perform actions to handle them

Computer Science and Engineering  The Ohio State University

Events Drive the Flow of Control

 This style is event driven programming
 Event handling occurs as a loop:
 Program is idle
 User performs an action
 Eg moves the mouse, clicks a button, types

in a text box, selects an item from menu, …
 This action generates an event (object)
 That event is sent to the program, which

responds
 Code executes, could update document

 Program returns to being idle

Computer Science and Engineering  The Ohio State University

Handling Events Mechanism
 Three parts of the event-handling

mechanism
 Event source: the widget with which the user

interacts
 Event object: encapsulated information about the

occurred event
 Event listener: a function that is called when an

event occurs, and responds to the event

HTML Element aHandler()
event object

Computer Science and Engineering  The Ohio State University

Simple Example: Color Swaps
<p>This page illustrates changing colors</p>
<form>
<p>
<label> background:
<input type="text" name="back" size="10"
onchange="foo('bg', this.value)" />

</label>

<label> foreground:
<input type="text" name="fore" size="10"
onchange="foo('fg', this.value)" />

</label>
</p>

</form>

Computer Science and Engineering  The Ohio State University

Color Swaps (JavaScript)
function foo(place, color) {
if (place === "bg")
document.body.style.backgroundColor =

color;
else
document.body.style.color = color;

}

Computer Science and Engineering  The Ohio State University

Event Propagation

 Elements are nested in tree
 When an event occurs, which

element's handler(s) is(are) notified?
 First, propagation path is calculated:

from root to smallest element
 Then event dispatch occurs in 3 phases

1. Capture (going down the path)
2. Target (smallest element)
3. Bubble (going up the path, reverse of 1)

Computer Science and Engineering  The Ohio State University

http://www.w3.org/TR/DOM-Level-3-Events/

Computer Science and Engineering  The Ohio State University

Bubbling Up

 Handling is usually done in phase 2
and 3

 Example: mouse click on hyperlink
 Handler for <a> element displays a pop-

up ("Are you sure you want to leave?")
 Once that is dismissed, event flows up to

enclosing <p> element, then <div> then…
etc. until it arrives at root element of DOM

 This root element (i.e. window) has a
handler that loads the new document in
the current window

Computer Science and Engineering  The Ohio State University

Programmer Tasks

 Define a handler
 Easy, any function will do

 Register handler
 Link (HTML) tree element with

(JavaScript) function(s)
 Invoke the handler when event occurs
 Ha! Not our job

 Get information about triggering event
 Handler is invoked with a parameter: an

event object

Computer Science and Engineering  The Ohio State University

Registering an Event Handler

 Three techniques, ordered from:
 Oldest (most brittle, simplest) to
 Newest (most general)

1. Inline (link in HTML itself)
…

2. Direct property (link in JavaScript)
let e = … // find source element in tree
e.onclick = foo;

3. Chained (link in JavaScript)
let e = … // find source element in tree
e.addEventListener("click", foo, false);

Computer Science and Engineering  The Ohio State University

Example
let divs =

document.querySelectorAll("div");
for (let d of divs) {
d.onmouseover = function() {

this.style.backgroundColor = "red"
}
d.onmouseout = function() {

this.style.backgroundColor = "blue"
} // *this* will be the element (div)

// that listener is registered with
}

Computer Science and Engineering  The Ohio State University

Handler Registration in DOM

 Each element has a collection of handlers
 Add/remove handler to this collection

let e = … // find source element in tree
e.addEventListener("click", foo);

 First parameter: event name
 Note: no "on" in event names, just "click"

 Second parameter: handler function
 This function takes an argument: event

 Third parameter: handling phase
 Default is false (target or bubbling phase)
 For capture phase (unusual) use true

Computer Science and Engineering  The Ohio State University

Example
let divs =

document.querySelectorAll("div");
for (let d of divs) {
d.addEventListener ("click",

function(event) {
this.act = this.act || false;
this.act = !this.act;
this.style.backgroundColor =
(this.act ? "red" : "gray");

});
}

Computer Science and Engineering  The Ohio State University

Pitfall: Wrong this with =>
let divs =

document.querySelectorAll("div");
for (let d of divs) {
d.addEventListener ("click",

(event) => { // wrong this
this.act = this.act || false;
this.act = !this.act;
this.style.backgroundColor =
(this.act ? "red" : "gray");

});
}

Computer Science and Engineering  The Ohio State University

Better: Use event Argument
let divs =

document.querySelectorAll("div");
for (let d of divs) {
d.addEventListener ("click",

(event) => { // use param, not this
let t = event.currentTarget;
t.act = t.act || false;
t.act = !t.act;
t.style.backgroundColor =
(t.act ? "red" : "gray");

});
}

Computer Science and Engineering  The Ohio State University

Summary

 DOM: Document Object Model
 Programmatic way to use document tree
 Get, create, delete, and modify nodes

 Event-driven programming
 Source: element in HTML (a node in DOM)
 Handler: JavaScript function
 Registration: in-line, direct, chained
 Event is available to handler for inspection

