
Computer Science and Engineering  College of Engineering  The Ohio State University

Working with Web APIs
(continued)

Lecture 15

Computer Science and Engineering  The Ohio State University

(De)serialization in Ruby

 Get JSON from an object
JSON.generate ([0x10, true, :age, 'hi'])
#=> "[16,true,\"age\",\"hi\"]"

 Get an object from JSON
s = "{\"zips\": [43210, 43211]}"
JSON.parse(s)
#=> {'zips' => [43210, 43211]}
JSON.parse(s, symbolize_names: true)
#=> {:zips => [43210, 43211]}

Computer Science and Engineering  The Ohio State University

Alternatives

 JSON is readable
 Sometimes used for configuration files
 VSCode: .vscode/settings.json
 .markdownlint.json, devcontainer.json,…

 But JSON isn't human-friendly
 No comments
 Visual clutter with lots of " marks

 Alternatives, when readability matters
 YAML: yet another markup language
 JSONC: adds comment, not universal

Computer Science and Engineering  The Ohio State University

Web APIs

 API contains endpoints, each of which:
 verb (GET or POST) and URL path
 Accepted arguments
 Returned value (typically JSON)

 Roughly equivalent to a method signature
 Many ways to call an endpoint
 Command line: curl
 Tool: VSCode extensions rest-client, Postman
 Ruby client gem: Faraday, Net::HTTP, httpx
 Client library provided by the service itself

(octokit for GitHub, stripe-ruby for Stripe)

Computer Science and Engineering  The Ohio State University

Example APIs
 Dad Jokes

 https://icanhazdadjoke.com/api

 Canvas (ie Carmen)
 https://canvas.instructure.com/doc/api/

 US National Weather Service
 https://www.weather.gov/documentation/services-web-

api

 US Census Bureau
 https://www.census.gov/data/developers/data-sets.html

 GitHub
 https://docs.github.com/en/rest

 And many, many more…
 https://github.com/public-apis/public-apis

Computer Science and Engineering  The Ohio State University

Demo: Calling an API
 Curl to dad jokes

$ curl \
https://icanhazdadjoke.com/search?term=computer
$ curl \
https://icanhazdadjoke.com/search?term=computer \
-H "Accept: application/json"

 Browser to Carmen API
https://osu.instructure.com/api/v1/courses

 HTTPX gem to dad jokes
require 'httpx'
resp = HTTPX.get('https://icanhazdadjoke.com',

headers: {'Accept' => 'application/json'})
puts resp.body
puts resp.json['joke']

Computer Science and Engineering  The Ohio State University

API Key

 Service may require a key to use
 Register with service, get a secret token

(ie a long random number or string)
 Include this token in every HTTP request,

eg using the Authorization header
Authorization: Bearer 8497~Xd0aaaaaIMadeThisUpzzzz

 Golden rule: never share or commit
your secret token!
 Treat it like a password
 Dilemma: Your code needs to use it, so it

needs to be stored somewhere…

Computer Science and Engineering  The Ohio State University

Solution Strategy: Env Variable
 Keep .env file out of commits!

.gitignore
.env

 Create .env file for secret(s)
.env
CANVAS_TOKEN=YOUR_SECRET_VALUE

 Create sample with dummy value(s)
.env.template
CANVAS_TOKEN=CANVAS_TOKEN_SECRET

 Use environment variable in client code
require 'dotenv'
Dotenv.load # looks for .env file
auth = "Bearer #{ENV['CANVAS_TOKEN']}"
req.header['Authorization'] = auth

Computer Science and Engineering  The Ohio State University

Getting an API Key

 GitHub
 Login, Settings > Developer Settings
 Personal access tokens > Tokens

 Canvas
 Login, Account > Settings
 Under "Approved Integrations",

"+ New Access Token"

 Use meaningful name for token
 Value typically shown just one time

Computer Science and Engineering  The Ohio State University

Summary
 Passing arguments
 GET: query string (url-encoded)
 POST: body (several different encodings)

 JSON
 Syntax for describing values
 Just a few basic types (object, array, text,

number…)
 Useful for (de)serialization, while also human-

readable
 API endpoints
 Response body is often JSON

 API keys
 Protect secrets, eg with private .env file
 Use in request header to legitimize source

