
Computer Science and Engineering College of Engineering The Ohio State University

Working with Web APIs
(continued)

Lecture 15

Computer Science and Engineering The Ohio State University

(De)serialization in Ruby

 Get JSON from an object
JSON.generate ([0x10, true, :age, 'hi'])
#=> "[16,true,\"age\",\"hi\"]"

 Get an object from JSON
s = "{\"zips\": [43210, 43211]}"
JSON.parse(s)
#=> {'zips' => [43210, 43211]}
JSON.parse(s, symbolize_names: true)
#=> {:zips => [43210, 43211]}

Computer Science and Engineering The Ohio State University

Alternatives

 JSON is readable
 Sometimes used for configuration files
 VSCode: .vscode/settings.json
 .markdownlint.json, devcontainer.json,…

 But JSON isn't human-friendly
 No comments
 Visual clutter with lots of " marks

 Alternatives, when readability matters
 YAML: yet another markup language
 JSONC: adds comment, not universal

Computer Science and Engineering The Ohio State University

Web APIs

 API contains endpoints, each of which:
 verb (GET or POST) and URL path
 Accepted arguments
 Returned value (typically JSON)

 Roughly equivalent to a method signature
 Many ways to call an endpoint
 Command line: curl
 Tool: VSCode extensions rest-client, Postman
 Ruby client gem: Faraday, Net::HTTP, httpx
 Client library provided by the service itself

(octokit for GitHub, stripe-ruby for Stripe)

Computer Science and Engineering The Ohio State University

Example APIs
 Dad Jokes

 https://icanhazdadjoke.com/api

 Canvas (ie Carmen)
 https://canvas.instructure.com/doc/api/

 US National Weather Service
 https://www.weather.gov/documentation/services-web-

api

 US Census Bureau
 https://www.census.gov/data/developers/data-sets.html

 GitHub
 https://docs.github.com/en/rest

 And many, many more…
 https://github.com/public-apis/public-apis

Computer Science and Engineering The Ohio State University

Demo: Calling an API
 Curl to dad jokes

$ curl \
https://icanhazdadjoke.com/search?term=computer
$ curl \
https://icanhazdadjoke.com/search?term=computer \
-H "Accept: application/json"

 Browser to Carmen API
https://osu.instructure.com/api/v1/courses

 HTTPX gem to dad jokes
require 'httpx'
resp = HTTPX.get('https://icanhazdadjoke.com',

headers: {'Accept' => 'application/json'})
puts resp.body
puts resp.json['joke']

Computer Science and Engineering The Ohio State University

API Key

 Service may require a key to use
 Register with service, get a secret token

(ie a long random number or string)
 Include this token in every HTTP request,

eg using the Authorization header
Authorization: Bearer 8497~Xd0aaaaaIMadeThisUpzzzz

 Golden rule: never share or commit
your secret token!
 Treat it like a password
 Dilemma: Your code needs to use it, so it

needs to be stored somewhere…

Computer Science and Engineering The Ohio State University

Solution Strategy: Env Variable
 Keep .env file out of commits!

.gitignore
.env

 Create .env file for secret(s)
.env
CANVAS_TOKEN=YOUR_SECRET_VALUE

 Create sample with dummy value(s)
.env.template
CANVAS_TOKEN=CANVAS_TOKEN_SECRET

 Use environment variable in client code
require 'dotenv'
Dotenv.load # looks for .env file
auth = "Bearer #{ENV['CANVAS_TOKEN']}"
req.header['Authorization'] = auth

Computer Science and Engineering The Ohio State University

Getting an API Key

 GitHub
 Login, Settings > Developer Settings
 Personal access tokens > Tokens

 Canvas
 Login, Account > Settings
 Under "Approved Integrations",

"+ New Access Token"

 Use meaningful name for token
 Value typically shown just one time

Computer Science and Engineering The Ohio State University

Summary
 Passing arguments
 GET: query string (url-encoded)
 POST: body (several different encodings)

 JSON
 Syntax for describing values
 Just a few basic types (object, array, text,

number…)
 Useful for (de)serialization, while also human-

readable
 API endpoints
 Response body is often JSON

 API keys
 Protect secrets, eg with private .env file
 Use in request header to legitimize source

