
Computer Science and Engineering  College of Engineering  The Ohio State University

Working with Web APIs

Lecture 13

Computer Science and Engineering  The Ohio State University

Passing arguments: GET

 Arguments are key-value pairs
Mascot: Brutus Buckeye
Dept: CS&E

 Can be encoded as part of URL
scheme://FQDN:port/path?query#fragment

 application/x-www-form-urlencoded
 Each key-value pair separated by & (or ;)
 Each key separated from value by =
 Replace spaces with + (arcane!)
 Then normal URL encoding
Mascot=Brutus+Buckeye&Dept=CS%26E

Computer Science and Engineering  The Ohio State University

Examples
 Wikipedia search

http://en.wikipedia.org/
w/index.php?
search=ada+lovelace

 OSU news articles
https://news.osu.edu/

?
q=Goldwater&search.x=1&search.y=0

 Random passwords from random.org
https://random.org/

passwords/?
num=5&len=8&format=plain

 Demo: use Chrome dev tools to "Copy as cURL"
 See guidelines and API for http clients

Computer Science and Engineering  The Ohio State University

Passing Arguments: POST
 Encoded as part of the request body
 Advantages:
 Arbitrary length (URL length is limited)
 Arguments are not saved in browser history
 Result is not cached by browser
 Slightly more secure (not really)

 But args are less likely to be accidentally shared,
because they aren't obvious in the location bar

 Content-Type indicates encoding
 application/x-www-form-urlencoded

 Same encoding as used with GET
 multipart/form-data

 Better for binary data (else 1 byte3 bytes)
 More options too:

 application/xml, application/json, …

Computer Science and Engineering  The Ohio State University

Passing Args: GET vs POST
 GET

GET /passwords/?num=5&len=8&format=plain
HTTP/1.1
Host: www.random.org

 POST
POST /passwords/ HTTP/1.1
Host: www.random.org
Content-Type: application/x-www-form-
urlencoded
Content-Length: 24

num=5&len=8&format=plain

Computer Science and Engineering  The Ohio State University

Passing Args: Summary

 Arguments in GET requests
 Request query string
 Limited length, highly visible
 application/x-www-form-urlencoded

 Arguments in POST requests
 Request body
 No size limit, not bookmarked
 Choices for how to encode, most common:
 application/x-www-form-urlencoded
 multipart/form-data
 application/json

Computer Science and Engineering  The Ohio State University

JSON

 JavaScript Object Notation
 String-based representation of a value
 Serialization: converting value -> string
 Deserialization: converting string -> value

 Easy enough for people to read
 Really designed for computers to parse
 The lingua franca for transfer of (object)

values via HTTP
 Used both ways: requests and responses

 MIME type: application/json

Computer Science and Engineering  The Ohio State University

JSON Types
 Text: a string, "…"

"hello", "I said \"hi\"", "3.4", ""
 Number: integer or floating point

6, -3.14, 6.022e23
 Boolean

true, false

 Null
null

 Array: ordered list of values, […]
[3, 2, 1, "go"], [[1, 3], [7, -2]]

 Object: set of name/value pairs, {…}
 Names are text (a double-quoted string)
 Values are any JSON type (text, array, object…)

{"mascot": "Brutus", "age": 19, "nut": true}

Computer Science and Engineering  The Ohio State University

Example

{"current_page":1,"limit":20,"next_
page":1,"previous_page":1,"results"
:[{"id":"GlGBIY0wAAd","joke":"How
much does a hipster weigh? An
instagram."},{"id":"xc21Lmbxcib","j
oke":"How did the hipster burn the
roof of his mouth? He ate the pizza
before it was
cool."}],"search_term":"hipster","s
tatus":200,"total_jokes":2,"total_p
ages":1}

Computer Science and Engineering  The Ohio State University

Example: Same Value
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the

pizza before it was cool."
}

],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

Computer Science and Engineering  The Ohio State University

Syntax

 Very similar to hash literal in Ruby
 Inspired by object literal in JavaScript
{"dept": "CSE", "class": 3901}
 Spaces and newlines don't matter

 But not identical!
 Important differences
 Keys must be strings (not symbols)
 "dept": not dept:

 Strings are double quoted (not single)
 "CSE" not 'CSE'

 No comments

Computer Science and Engineering  The Ohio State University

Example
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the

pizza before it was cool."
}

],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

data['results'][1]['id'] #=>

Computer Science and Engineering  The Ohio State University

Example
{
"current_page": 1,
"limit": 20,
"next_page": 1,
"previous_page": 1,
"results": [
{
"id": "GlGBIY0wAAd",
"joke": "How much does a hipster weigh? An instagram."

},
{
"id": "xc21Lmbxcib",
"joke": "How did the hipster burn the roof of his mouth? He ate the

pizza before it was cool."
}

],
"search_term": "hipster",
"status": 200,
"total_jokes": 2,
"total_pages": 1

}

data['results'][1]['id'] #=> 'xc21Lmbxcib' (ruby)
data.results[1].id #=> 'xc21Lmbxcib' (other languages)

