
Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Working with Web APIs

Lecture 8

Computer Science and Engineering ◼ The Ohio State University

Passing arguments: GET

 Arguments are key-value pairs
Mascot: Brutus Buckeye

Dept: CS&E

 Can be encoded as part of URL
scheme://FQDN:port/path?query#fragment

 application/x-www-form-urlencoded
◼ Each key-value pair separated by & (or ;)

◼ Each key separated from value by =

◼ Replace spaces with + (arcane!)

◼ Then normal URL encoding

Mascot=Brutus+Buckeye&Dept=CS%26E

Computer Science and Engineering ◼ The Ohio State University

Examples

 Wikipedia search
http://en.wikipedia.org/

w/index.php?

search=ada+lovelace

 OSU news articles
https://news.osu.edu/

?

q=Goldwater&search.x=1&search.y=0

 Random passwords from random.org
https://random.org/

passwords/?

num=5&len=8&format=plain

◼ Demo: use Chrome dev tools to "Copy as cURL"

◼ See guidelines and API for http clients

https://www.random.org/passwords/
https://www.random.org/clients/http/

Computer Science and Engineering ◼ The Ohio State University

Passing Arguments: POST

 Encoded as part of the request body
 Advantages:

◼ Arbitrary length (URLs are limited)
◼ Arguments not saved in browser history
◼ Result not cached by browser

◼ Slightly more secure (not really)
 Args are less likely to be accidentally shared,

because they aren't obvious in the location bar

 Content-Type indicates encoding
◼ application/x-www-form-urlencoded

 Same encoding as used with GET

◼ multipart/form-data
 Better for binary data (else 1 byte→3 bytes)

◼ More options too:
 application/xml, application/json, …

Computer Science and Engineering ◼ The Ohio State University

Passing Args: GET vs POST

 GET
GET /passwords/?num=5&len=8&format=plain
HTTP/1.1

Host: www.random.org

 POST
POST /passwords/ HTTP/1.1

Host: www.random.org

Content-Type: application/x-www-form-
urlencoded

Content-Length: 24

num=5&len=8&format=plain

Computer Science and Engineering ◼ The Ohio State University

Passing Args: Summary

 Arguments in GET requests

◼ Request query string

◼ Limited length, highly visible

◼ application/x-www-form-urlencoded

 Arguments in POST requests

◼ Request body

◼ No size limit, not bookmarked

◼ Choices for how to encode, most common:

 application/x-www-form-urlencoded

 multipart/form-data

 application/json

Computer Science and Engineering ◼ The Ohio State University

JSON

 JavaScript Object Notation

 String-based representation of a value

◼ Serialization: converting value -> string

◼ Deserialization: converting string -> value

 Easy enough for people to read

 Really designed for computers to parse

◼ The lingua franca for transfer of (object)
values via HTTP

◼ Used both ways: requests and responses

 MIME type: application/json

Computer Science and Engineering ◼ The Ohio State University

JSON Types

 Text: a string, "…"
"hello", "I said \"hi\"", "3.4", ""

 Number: integer or floating point
6, -3.14, 6.022e23

 Boolean
true, false

 Null
null

 Array: ordered list of values, […]
[3, 2, 1, "go"], [[1, 3], [7, -2]]

 Object: set of name/value pairs, {…}
{"mascot": "Brutus", "age": 19, "nut": true}

Computer Science and Engineering ◼ The Ohio State University

Example

{"current_page":1,"limit":20,"next_

page":1,"previous_page":1,"results"

:[{"id":"GlGBIY0wAAd","joke":"How

much does a hipster weigh? An

instagram."},{"id":"xc21Lmbxcib","j

oke":"How did the hipster burn the

roof of his mouth? He ate the pizza

before it was

cool."}],"search_term":"hipster","s

tatus":200,"total_jokes":2,"total_p

ages":1}

Computer Science and Engineering ◼ The Ohio State University

Example: Same Value

{

"current_page": 1,

"limit": 20,

"next_page": 1,

"previous_page": 1,

"results": [

{

"id": "GlGBIY0wAAd",

"joke": "How much does a hipster weigh? An instagram."

},

{

"id": "xc21Lmbxcib",

"joke": "How did the hipster burn the roof of his mouth? He ate the
pizza before it was cool."

}

],

"search_term": "hipster",

"status": 200,

"total_jokes": 2,

"total_pages": 1

}

Computer Science and Engineering ◼ The Ohio State University

Syntax

 Very similar to hash literal in Ruby
◼ Inspired by object literal in JavaScript

{"dept": "CSE", "class": 3901}

◼ Spaces and newlines don't matter

 But not identical!

 Important differences
◼ Keys must be strings (not symbols)

 "dept": not dept:

◼ Strings are double quoted (not single)
 "CSE" not 'CSE'

◼ No comments

Computer Science and Engineering ◼ The Ohio State University

Example

{

"current_page": 1,

"limit": 20,

"next_page": 1,

"previous_page": 1,

"results": [

{

"id": "GlGBIY0wAAd",

"joke": "How much does a hipster weigh? An instagram."

},

{

"id": "xc21Lmbxcib",

"joke": "How did the hipster burn the roof of his mouth? He ate the
pizza before it was cool."

}

],

"search_term": "hipster",

"status": 200,

"total_jokes": 2,

"total_pages": 1

}

data['results'][1]['id'] #=> 'xc21Lmbxcib' (ruby)

data.results[1].id #=> 'xc21Lmbxcib' (other languages)

Computer Science and Engineering ◼ The Ohio State University

(De)serialization in Ruby

 Get JSON from an object
JSON.generate ([0x10, true, :age, 'hi'])

#=> "[16,true,\"age\",\"hi\"]"

 Get an object from JSON
s = "{\"zips\": [43210, 43211]}"

JSON.parse(s)

#=> {'zips' => [43210, 43211]}

JSON.parse(s, {symbolize_names: true})

#=> {:zips => [43210, 43211]}

Computer Science and Engineering ◼ The Ohio State University

Alternatives

 JSON is readable

◼ Sometimes used for configuration files

 VSCode: .vscode/settings.json

 .markdownlint.json, devcontainer.json,…

 But JSON isn't human-friendly

◼ No comments

◼ Visual clutter with lots of " marks

 Alternatives, when readability matters

◼ YAML: yet another markup language

◼ JSONC: adds comment, not universal

Computer Science and Engineering ◼ The Ohio State University

Web APIs

 API contains endpoints, each of which:

◼ verb (GET or POST) and URL path

◼ Accepted arguments

◼ Returned value (typically JSON)

 Roughly equivalent to a method signature

 Many ways to call an endpoint

◼ Command line: curl

◼ Tool: VSCode extension rest-client, Postman

◼ HTTP client library: (Faraday, Net::HTTP)

◼ Client library provided by the service itself

(octokit for GitHub, stripe-ruby for Stripe)

Computer Science and Engineering ◼ The Ohio State University

Example APIs

 Dad Jokes
◼ https://icanhazdadjoke.com/api

 Canvas (ie Carmen)
◼ https://canvas.instructure.com/doc/api/

 US National Weather Service
◼ https://www.weather.gov/documentation/services-web-

api

 US Census Bureau
◼ https://www.census.gov/data/developers/data-sets.html

 GitHub
◼ https://docs.github.com/en/rest

 And many, many more…
◼ https://github.com/public-apis/public-apis

https://icanhazdadjoke.com/api
https://canvas.instructure.com/doc/api/
https://www.weather.gov/documentation/services-web-api
https://www.weather.gov/documentation/services-web-api
https://www.census.gov/data/developers/data-sets.html
https://docs.github.com/en/rest
https://github.com/public-apis/public-apis

Computer Science and Engineering ◼ The Ohio State University

API Key

 Service may require a key to use

◼ Register with service, get a secret token
(ie a long random number or string)

◼ Include this token in every HTTP request,
eg using the Authorization header
Authorization: Bearer 8497~Xd0aaaaaIMadeThisUpzzzz

 Golden rule: never share or commit
your secret token!

◼ Treat it like a password

◼ Dilemma: Your code needs to use it, so it
needs to be stored somewhere…

Computer Science and Engineering ◼ The Ohio State University

Solution Strategy: Env Variable

 Create .env file for secret(s)
.env

CANVAS_TOKEN=YOUR_SECRET_VALUE

 Keep .env file out of commits!
.gitignore

.env

 Create sample with dummy value(s)
.env.template

CANVAS_TOKEN=CANVAS_TOKEN_SECRET

 Use environment variable in client code
require 'dotenv'

Dotenv.load # looks for .env file

auth = "Bearer #{ENV['CANVAS_TOKEN']"

req.header['Authorization'] = auth

Computer Science and Engineering ◼ The Ohio State University

Getting an API Key

 GitHub

◼ Login, Settings > Developer Settings

◼ Personal access tokens > Tokens

 Canvas

◼ Login, Account > Settings

◼ Under "Approved Integrations",
"+ New Access Token"

 Use meaningful name for token

 Value typically shown just one time

Computer Science and Engineering ◼ The Ohio State University

Summary

 Passing arguments
◼ GET: query string (url-encoded)
◼ POST: body (several different encodings)

 JSON
◼ Syntax for describing values

◼ Just a few basic types (object, array, text,
number…)

◼ Useful for (de)serialization, while also human-
readable

 API endpoints
◼ Response body is often JSON

 API keys
◼ Protect secrets, eg with private .env file
◼ Use in request header to legitimize source

	Slide 1: Working with Web APIs
	Slide 2: Passing arguments: GET
	Slide 3: Examples
	Slide 4: Passing Arguments: POST
	Slide 5: Passing Args: GET vs POST
	Slide 6: Passing Args: Summary
	Slide 7: JSON
	Slide 8: JSON Types
	Slide 9: Example
	Slide 10: Example: Same Value
	Slide 11: Syntax
	Slide 12: Example
	Slide 13: (De)serialization in Ruby
	Slide 14: Alternatives
	Slide 15: Web APIs
	Slide 16: Example APIs
	Slide 18: API Key
	Slide 19: Solution Strategy: Env Variable
	Slide 20: Getting an API Key
	Slide 21: Summary

