
Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Networking Basics:
IP, DNS, URL, MIME

Lecture 7

Computer Science and Engineering ◼ The Ohio State University

Internet Protocol (IP) Addresses

 A unique 32-bit number

◼ Assigned to device connected to internet

◼ An address for delivery of packets

 Written in dotted-decimal notation

◼ Divided into 4 fields separated by “.”

◼ Each field is 8 bits, ie 0-255 decimal
10100100011010110111101100000110

10100100.01101011.01111011.00000110

164.107.123.6

 Some are reserved: eg, 127.0.0.1

Computer Science and Engineering ◼ The Ohio State University

Abstract Value vs Encoding

 Abstraction: 32-bit integer value

 Encodings
◼ Dotted decimal

◼ Dotted hex

◼ Dotted octal

◼ Hexadecimal

◼ Decimal

◼ Binary

◼ Etc…

 Recall: abstraction, representation,
correspondence relation

Computer Science and Engineering ◼ The Ohio State University

Address Space

 Organizations are allocated blocks of
contiguous address to use

 32 bits means 4 billion addresses

◼ Population of the earth: 7 billion

◼ Not enough addresses to go around!

 The end is predictable

◼ Techniques like NAT developed to help

 In fact, the end has come!

◼ Feb 2011: Last block was allocated

Computer Science and Engineering ◼ The Ohio State University

Computer Science and Engineering ◼ The Ohio State University

IPv6

 128 bits
◼ ~1040 addresses; we’re good for a while

◼ A growing fraction of IP traffic
GoogleIPv6 statistics

 Recommended format (canonical):
◼ Divide into 8 fields separated by “:”

◼ Each field is 4 hex digits (0-FFFF), ie 16 bits

◼ Omit leading 0’s in a field

◼ If there are consecutive fields with value 0,
compress them as “::”

◼ Compress at most one such set of 0’s
 Otherwise encoding could be ambiguous

 Compress the longest sequence

https://www.google.com/intl/en/ipv6/statistics.html

Computer Science and Engineering ◼ The Ohio State University

Canonical Format: Uniqueness

2001:0db8:0000:0000:0000:ff00:0042:8329

2001:0db8:0000:0000:0000:ff00:0042:8329

2001:db8:0:0:0:ff00:42:8329

2001:db8:0:0:0:ff00:42:8329

2001:db8::ff00:42:8329

Computer Science and Engineering ◼ The Ohio State University

Domain Names

 String corresponds to an IP address
◼ web.cse.ohio-state.edu is easier than

164.107.123.6

 Case insensitive: Lower-case standard

 A partial map (almost)

◼ DNS maps lower-case strings → IP
addresses

◼ Multiple strings can map to same address!

◼ Some strings map to multiple addresses
(unusual)!

Computer Science and Engineering ◼ The Ohio State University

Domain Name Hierarchy

 Separated by .’s
◼ Don’t confuse with dotted decimal!

 Right-to-left hierarchy
◼ Top-level domain is right-most field

 edu, com, net, gov, countries (ca, it, …)

◼ Second-level domain to its left

◼ Then third, fourth, etc, no limit
www.sos.state.oh.us

 Hostname + Domain Name =
Fully Qualified Domain Name (FQDN)
stdlinux.cse.ohio-state.edu

Computer Science and Engineering ◼ The Ohio State University

Computer Science and Engineering ◼ The Ohio State University

Name Servers

 Act as a phonebook for lookup

 Client view:
◼ Given a FQDN, return IP address
◼ Partial map: FQDNs → IP addresses

◼ See host, whois

 Implementation view:
◼ Hierarchical by domain

◼ Local caching for recently retrieved items

 Command line tools
$ host web.cse.ohio-state.edu

web.cse.ohio-state.edu has address

164.107.129.176

$ whois osu.com

Computer Science and Engineering ◼ The Ohio State University

Protocols

 Systematic ordering of messages

◼ Phone rings

◼ Callee answers by saying “Hello”

◼ Caller answers by saying “Hello”

 Different protocols use different
messages, different sequencing, etc

◼ In Italy, callee answers by saying “Pronto”

Computer Science and Engineering ◼ The Ohio State University

Network Layering: Abstraction

 One protocol is built on top of another

◼ Application level: FTP, HTTP, SSH, SMTP,
TELNET

◼ Transport: TPC, UDP

◼ Internet: IP

 Each protocol assumes certain
behavior from layer below

◼ IP routes packets to destination
(unreliable)

◼ TCP creates a reliable, in-order channel

◼ HTTP delivers web pages

Computer Science and Engineering ◼ The Ohio State University

Network Ports

 A single host has many ports

 Application-level protocols have default
port
◼ ftp -> 20

◼ http -> 80
◼ imap ->143
◼ ssh -> 22

◼ smtp -> 25
◼ telnet-> 23

 A “web server” is just a program,
running, waiting, listening for a call (on
port 80)
◼ See telnet

Computer Science and Engineering ◼ The Ohio State University

URL

 Uniform Resource Locator
scheme://FQDN:port/path?query#fragment

 Schemes include http, ftp, mailto, file…
◼ Case insensitive, but prefer lower case

 Port is optional (each scheme has default)
◼ 80 for http

 Variety of formats, depending on scheme
http://www.osu.edu/news/index.php

ftp://doe@ftp.cse.ohio-state.edu

mailto://brutus.1@osu.edu

 FQDN is case insensitive, prefer lower
case

Computer Science and Engineering ◼ The Ohio State University

Document Root

 Web server configured to serve

documents from a location in file system
◼ “document root”: /class/3901

◼ File: /class/3901/labs/lab2.html

◼ URL:
http://www.cse.osu.edu/labs/lab2.html

 Slashes in path should be for server’s OS

(but forward slashes are common)

 Virtual servers: multiple doc roots

 Proxy servers: remote doc roots

Computer Science and Engineering ◼ The Ohio State University

Encoding (and Decoding)

 A single value can be viewed at two
levels, eg:
◼ HELLO

◼-.. .-.. ---

 Different uses: reading vs transmission
 Different alphabets (letters vs dot-dash)

and/or requirements
◼ Eg. Message has only upper case letters

 Encoding/decoding is the translation
between these levels
◼ c.f. encrypting/decrypting

 Abstract value vs concrete representation
◼ Correspondence maps between the two

Computer Science and Engineering ◼ The Ohio State University

Example: URL Encoding

 Invariant on abstract value (constraint)
◼ Reserved metacharacters (;, :, &, #, @…)

 Invariant on encoding (convention)
◼ Small set of valid characters, others (eg

space, ~, newline…) are not allowed

 So some characters in abstract value are
encoded as %hh (ASCII code in hex)
◼ %3B for ;, %40 for @

◼ %20 for space, %7E for ~

 Q: What about % in abstract value?
◼ A: Encode it too! %25

 aka “percent encoding”

Computer Science and Engineering ◼ The Ohio State University

URL Encoding

Value Mascot "address": brutus@osu.edu

Encoding Mascot%20%22address%22%3A%20brutus%40osu.edu

Computer Science and Engineering ◼ The Ohio State University

MIME

 Multipurpose Internet Mail Extensions
◼ Originally for email attachments

 Content Type: How to interpret a file
◼ File is a blob of bits (encoding)
◼ How should we decode this blob into an (abstract)

value? Colors, sounds, characters?
◼ Recall: correspondence relation

 Syntax: type/subtype
◼ text/plain, text/html, text/css, text/javascript
◼ image/gif, image/png, image/jpeg
◼ video/mpeg, video/quicktime

 Transfer Encoding: How to interpret a msg
◼ How to decode the blob of bits that arrived
◼ A layered encoding
◼ Examples: quoted-printable, base64

Computer Science and Engineering ◼ The Ohio State University

Example: Multiple Parts

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.

--aFrontierString

Content-Type: text/plain

This is the body of the message.

--aFrontierString

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA
+VGhpcyBpcyB0aGUg

Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw
+Cg==

--aFrontierString--

Computer Science and Engineering ◼ The Ohio State University

Example: Content Type

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.

--aFrontierString

Content-Type: text/plain

This is the body of the message.

--aFrontierString

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA
+VGhpcyBpcyB0aGUg

Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw
+Cg==

--aFrontierString--

Computer Science and Engineering ◼ The Ohio State University

Example: Transfer Encoding

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=aFrontierString

This is a message with multiple parts in MIME format.

--aFrontierString

Content-Type: text/plain

This is the body of the message.

--aFrontierString

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA
+VGhpcyBpcyB0aGUg

Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw
+Cg==

--aFrontierString--

Computer Science and Engineering ◼ The Ohio State University

Layered Encoding

content

(bits)

source

(image)

ffd8ffe000104a464946…

transfer encoded

(channel)

ASCII

/9j/4AAQSk…

Content-Type
image/jpeg

Content-Transfer-Encoding
???

Computer Science and Engineering ◼ The Ohio State University

Encoding (Binary) Data in ASCII

 Binary data: Any byte value is possible
◼ 00 to FF (i.e. xxxx xxxx)

 ASCII data: bytes start with 0
◼ 00 to 7F (i.e. 0xxx xxxx)

 Problem: a channel that needs ASCII
◼ Encoding must use ASCII alphabet

 Hex: 4 bits becomes 1 ASCII character
1101 0110 1100 1111 0011 1001

D 6 A F 2 5

◼ Problem?

Computer Science and Engineering ◼ The Ohio State University

Quoted-Printable Encoding

 Observation: bytes that happen to be
ASCII do not need to be encoded

◼ If most data is text, savings are significant

 For each byte:

◼ If first bit is 0, do nothing

◼ If first bit is 1, encode with 3 bytes: =XY

where XY is the hex value of byte

 Limit line length to 76 characters

 Finish lines with "="

 Q: What if data contains the byte "="?

Computer Science and Engineering ◼ The Ohio State University

Example

Computer Science and Engineering ◼ The Ohio State University

Encoding Binary Data

 What if most data is not ASCII?

◼ Raw (base 256): 8 bits are a digit (byte)

1101 0110 1100 1111 0010 0101

? ? %

◼ Hex (base 16): 4 bits → digit (byte)

1101 0110 1100 1111 0011 1001

D 6 A F 2 5

◼ Quoted-Printable: 8 bits → 3 bytes

1101 0110 1100 1111 0011 1001

=D 6 =A F %

◼ Can we do better?

Computer Science and Engineering ◼ The Ohio State University

Encoding Binary Data

 What if most data is not ASCII?

◼ Raw (base 256): 8 bits are a digit (byte)

1101 0110 1100 1111 0010 0101

? ? %

◼ Hex (base 16): 4 bits → digit (byte)

1101 0110 1100 1111 0011 1001

D 6 A F 2 5

◼ Base 64: 6 bits → 3 digit (byte)

1101 0110 1100 1111 0011 1001

1 s 8 5

Computer Science and Engineering ◼ The Ohio State University

Base64 Alphabet

en.wikipedia.org/wiki/Base64

Computer Science and Engineering ◼ The Ohio State University

Layered Encoding: Base64

transmission

(bits)

content

(bits)

source

(image)

ffd8ffe000104a464946…

2f396a2f344141536b…

encoded

(alphabet)
/9j/4AAQSk…

Content-Type
image/jpeg

Content-Transfer-Encoding
base64

ASCII

Computer Science and Engineering ◼ The Ohio State University

Base64 Encoding

en.wikipedia.org/wiki/Base64

Computer Science and Engineering ◼ The Ohio State University

Determining MIME Content Type

 The sender (web server) determines MIME
(content) type of document being sent
◼ Rules map file extensions to MIME types

 If file arrives without MIME info, receiver has
to guess (see file command)
◼ File extension may help
◼ Contents may help: magic number at start

 JPG: ff d8…

 PDF: 25 50 44 46… (ie %PDF)
 PNG: 89 50 4e 47 0d 0a 1a 0a… (ie .PNG…)

 Some types handled by browser itself
 Others require plugin or application
 Experimental MIME subtypes: x-

◼ application/x-gzip

Computer Science and Engineering ◼ The Ohio State University

Summary

 IP address are unique on network
◼ IPv4 vs IPv6

 DNS maps strings to IP addresses
◼ Domains nested hierarchically

 URLs identify resources on network
◼ Scheme, host, path

 MIME type defines a file’s encoding
◼ Correspondence

◼ Layered encodings are possible too

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

HTTP:
Hypertext Transfer Protocol

Computer Science and Engineering ◼ The Ohio State University

HTTP

 Hypertext Transfer Protocol
 History

◼ Early 90's: developed at CERN, Tim Berners-Lee
◼ 1996: version 1.0
◼ 1999: version 1.1 (ubiquitous today!)

◼ 2015: version 2
 Performance improvements: binary, server push…
 Backwards compatible

◼ 2022: version 3
 Performance improvements, same semantics
w3techs.com/technologies/overview/site_element

 Simple request/response (client/server)
◼ Client sends request to (web) server
◼ (Web) server responds
◼ Protocol itself is stateless

https://w3techs.com/technologies/overview/site_element

Computer Science and Engineering ◼ The Ohio State University

Anatomy of a Request/Response

 An HTTP request/response consists of

1. Method (request) / status (response)

2. Header fields: meta information

3. A blank line

4. Body (sometimes): payload

 The header (parts 1-3) is ASCII text

◼ Newline is CRLF (typical of IETF protocols)

◼ Method/status is 1 line

◼ Each header field is on its own line

◼ Blank line separates header from body

Computer Science and Engineering ◼ The Ohio State University

Protocol: Request, Response

Request

Response

Method
Header field 1
Header field 2

Body

Status
Header field 1
Header field 2
Header field 3

Body

Computer Science and Engineering ◼ The Ohio State University

Request Header: Method

 Syntax of first line:
verb path version

◼ Verb: GET, HEAD, POST, PUT, DELETE,…

◼ Path: part of URL (path and query)
scheme://FQDN:port/path?query#fragment

◼ Version: HTTP/1.1, HTTP/2, HTTP/3

 Example:

◼ For URL
http://www.osu.edu/academics#content

◼ First line of HTTP request is
GET /academics HTTP/1.1

Computer Science and Engineering ◼ The Ohio State University

Request Header: Header Fields

 Each field is on its own line:
name: value

 Examples
Host: cse.ohio-state.edu

Accept: text/*,image/apng

Accept-Language: en-US,en;q=0.9

If-Modified-Since: Sat, 12 May 2021

19:43:31 GMT

Content-Length: 349

User-Agent: Mozilla/5.0 (X11; Linux

x86_64) Chrome116.0.0.0 Safari/537.36

 Header names are case insensitive

Computer Science and Engineering ◼ The Ohio State University

Some Common Header Fields

 Host
◼ The only required field
◼ Q: Why is host field even needed?

 Accept, Accept-Language, Accept-Encoding
◼ List of browser preferences for response
◼ MIME types, language locales, transfer encodings
◼ Priority based on order and q-value weight (0-1)

 User-Agent
◼ Identifies application making request

 If-Modified-Since
◼ Send payload only if changed since date
◼ Date must be GMT

 Content-Length
◼ Required if request has a body
◼ Number of bytes in body

 Referer (misspelled in spec)
◼ Previous web page, ie source of this request

Computer Science and Engineering ◼ The Ohio State University

Steiner, The New Yorker (1993)

Computer Science and Engineering ◼ The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1

Host: www.osu.edu

User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

Computer Science and Engineering ◼ The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1

Host: www.osu.edu

User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

$ curl -A "Mozilla/5.0" http://www.osu.edu

$ telnet

require 'mechanize'

agent = Mechanize.new

page = agent.get 'http://www.osu.edu'

Computer Science and Engineering ◼ The Ohio State University

Demo: HTTP Request with telnet

 Example URL
◼ cse3901-2025sp-giles.github.io/osu-

cse3901-sp2025-giles.github.io/

$ telnet cse3901-2025sp-

giles.github.io/osu-cse3901-sp2025-

giles.github.io/ 80

◼ Opens connection to port 80, where a web
server is listening

 Send the following HTTP request:
GET /news HTTP/1.1

Host: osu.edu

<blank line>

Computer Science and Engineering ◼ The Ohio State University

HTTP Traffic Transparency

 Everything is visible to an eavesdropper
◼ HTTP headers are plain text

◼ HTTP payload may be binary

 To protect communication, use encryption
◼ SSL, TLS: protocols to create secure channel

◼ Initial handshake between client and server
◼ Subsequent communication is encrypted

 HTTP over secure channel = HTTPS
◼ Default port: 443

Request

MFKM5DO388HSshF1GfEr

x5PXsJk0hGVtiK8xoNf4

Computer Science and Engineering ◼ The Ohio State University

Demo: HTTPS with openssl

 Use openssl instead of telnet
◼ Negotiates initial handshake with server

◼ Handles encryption/decryption of traffic

 Example URL
◼ https://www.osu.edu/

 At console
$ openssl s_client -connect www.osu.edu:443

◼ Note connection to port 443 (ie https)

 Syntax of subsequent request is the same
 Send the following HTTP request:

GET / HTTP/1.1

Host: www.osu.edu

<blank line>

Computer Science and Engineering ◼ The Ohio State University

HTTP Response Anatomy

 Recall, four parts
1. Status (one line)

2. Header fields (separated by newlines)

3. Blank line

4. Body (i.e., payload)

 Parts 1-2 collectively are the header

 Status line syntax:
http-version status-code text

◼ Examples

HTTP/1.1 200 OK

HTTP/1.1 301 Moved Permanently

HTTP/1.1 404 Not Found

Computer Science and Engineering ◼ The Ohio State University

Taxonomy of Status Codes

Code Meaning

1xx Informational

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error

Computer Science and Engineering ◼ The Ohio State University

Some Common Status Codes

 200 Success/OK
◼ All is good!
◼ Response body is the requested document

 301 Permanent Redirect / 302 Temporary Redirect
◼ Requested resource is found somewhere else
◼ 301 means please go to new location in the future

 304 Not Modified
◼ Document hasn’t changed since date/time in If-

Modified-Since field of request
◼ No response body

 404 Not Found
◼ Server could not satisfy the request
◼ It is the client’s fault (design-by-contract?)

 500 Internal Server Error
◼ Server could not satisfy the request
◼ It is the server’s fault (design-by-contract?)

Computer Science and Engineering ◼ The Ohio State University

Response Header: Header Fields

 Each field on its own line, syntax:
name: value

 Examples
Date: Tue, 19 Sep 2023 17:31:18 GMT

Server: Apache/2.4.6 (Red Hat)

Content-Type: text/html; charset=UTF-8

Content-Encoding: gzip

Content-Length: 333

 Blank line indicates end of headers

Computer Science and Engineering ◼ The Ohio State University

Demo: Using Terminal

 Telnet is cumbersome
◼ Requesting the following by telnet fails (why?)
http://cse3901-2025sp-giles.github.io/osu-
cse3901-sp2025-giles.github.io/

Try:
https://cse3901-2025sp-giles.github.io/osu-
cse3901-sp2025-giles.github.io/

◼ Body is incomplete (no images)
◼ Body is chunked

 Better command-line tool: cURL
◼ Handles redirection, chunking, https, headers, …
$ curl –Li cse3901-2025sp-giles.github.io/osu-
cse3901-sp2025-giles.github.io/

◼ Can explicitly set request headers (-H)
$ curl https://www.osu.edu \

-A "Mozilla/5.0"

-H "accept: text/html"

http://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/
http://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/
https://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/
https://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/
https://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/
https://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/

Computer Science and Engineering ◼ The Ohio State University

Demo: Chrome Developer Tools

 Powerful inspection tool for the web
◼ Kabob > More Tools… > Developer Tools,

then see the Network tab

 One GET results in many requests
https://cse3901-2025sp-
giles.github.io/osu-cse3901-sp2025-
giles.github.io/

 For each request, see:
◼ Request method, headers
◼ Response status code, and headers
◼ Response body (and preview)

 To reproduce a request:
◼ Right click, Copy > Copy as cURL

https://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/
https://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/
https://cse3901-2025sp-giles.github.io/osu-cse3901-sp2025-giles.github.io/

Computer Science and Engineering ◼ The Ohio State University

Demo: Using Ruby

 Mechanize: A Ruby gem for HTTP
require 'mechanize'

 Create an agent to send requests
agent = Mechanize.new do |a|

a.user_agent_alias = 'Mac Safari'

end

 Use agent to issue a request
page = agent.get 'https://news.osu.edu'

 Follow links, submit forms, etc
h = page.link_with(text: /Top/).click

f = page.forms[0]

f.field_with(name: 'q').value = 'CSE'

s = f.submit

Computer Science and Engineering ◼ The Ohio State University

Request Methods

 GET, HEAD
◼ Request: should be safe (no side effects)

◼ Request has header only (no body)

 PUT
◼ Update (or create): should be idempotent

 DELETE
◼ Delete: should be idempotent

 POST
◼ Create (or update): changes server state

◼ Beware re-sending!

 HTTP does not enforce these semantics

Computer Science and Engineering ◼ The Ohio State University

HTTP is Stateless

 Every request looks the same

 But maintaining state between requests is
really useful:
◼ User logs in, then can GET account info

◼ Shopping cart “remembers” contents

 Solution: Keep a shared secret
◼ Server's first response contains a unique

session identifier (a long random value)

◼ Subsequent requests from this client include
this secret value

◼ Server recognizes the secret value, request
must have come from original client

Computer Science and Engineering ◼ The Ohio State University

HTTP Session

Request

Computer Science and Engineering ◼ The Ohio State University

HTTP Session

Request

38afes7a8

Store secret

Computer Science and Engineering ◼ The Ohio State University

HTTP Session

Request

Response
Secret: 38afes7a8

38afes7a8

Store secret

Computer Science and Engineering ◼ The Ohio State University

HTTP Session

Request

Response
Secret: 38afes7a8

Request
id: 38afes7a8

Response

38afes7a8

Store secret

Check id

Request
id: 38afes7a8

Response

Check id

Computer Science and Engineering ◼ The Ohio State University

HTTP Cookies

 Popular mechanism for session manag’nt

 Set in response header field
Set-Cookie: session=38afes7a8

◼ Any name/value is ok

◼ Options: expiry, require https

 Client then includes cookie(s) in any
subsequent request to that domain

 Sent in request header field:
Cookie: session=38afes7a8

 Cookies also used for
◼ Tracking/analytics: What path did they take?

◼ Personalization

Computer Science and Engineering ◼ The Ohio State University

Summary

 HTTP: request/response

 Anatomy of request
◼ Methods: GET, PUT, DELETE, POST

◼ Headers

◼ Body: arguments of POST

 Anatomy of response
◼ Status Codes: 200, 301, 404, etc

◼ Headers

◼ Body: payload

 Tools
◼ Curl, Developer Tools, Mechanize

	Slide 2: Networking Basics: IP, DNS, URL, MIME
	Slide 3: Internet Protocol (IP) Addresses
	Slide 4: Abstract Value vs Encoding
	Slide 5: Address Space
	Slide 6
	Slide 7: IPv6
	Slide 8: Canonical Format: Uniqueness
	Slide 9: Domain Names
	Slide 10: Domain Name Hierarchy
	Slide 11
	Slide 12: Name Servers
	Slide 13: Protocols
	Slide 14
	Slide 15: Network Layering: Abstraction
	Slide 16: Network Ports
	Slide 17: URL
	Slide 18: Document Root
	Slide 19: Encoding (and Decoding)
	Slide 20: Example: URL Encoding
	Slide 21: URL Encoding
	Slide 22: MIME
	Slide 23: Example: Multiple Parts
	Slide 24: Example: Content Type
	Slide 25: Example: Transfer Encoding
	Slide 26: Layered Encoding
	Slide 27: Encoding (Binary) Data in ASCII
	Slide 29: Quoted-Printable Encoding
	Slide 30: Example
	Slide 31: Encoding Binary Data
	Slide 32: Encoding Binary Data
	Slide 33: Base64 Alphabet
	Slide 34: Layered Encoding: Base64
	Slide 35: Base64 Encoding
	Slide 36: Determining MIME Content Type
	Slide 37: Summary
	Slide 39: HTTP: Hypertext Transfer Protocol
	Slide 40: HTTP
	Slide 41: Anatomy of a Request/Response
	Slide 42: Protocol: Request, Response
	Slide 43: Request Header: Method
	Slide 44: Request Header: Header Fields
	Slide 45: Some Common Header Fields
	Slide 46: Steiner, The New Yorker (1993)
	Slide 47: "Nobody knows you're a dog"
	Slide 48: "Nobody knows you're a dog"
	Slide 49: Demo: HTTP Request with telnet
	Slide 50: HTTP Traffic Transparency
	Slide 51: Demo: HTTPS with openssl
	Slide 52: HTTP Response Anatomy
	Slide 53: Taxonomy of Status Codes
	Slide 54: Some Common Status Codes
	Slide 55: Response Header: Header Fields
	Slide 56: Demo: Using Terminal
	Slide 57: Demo: Chrome Developer Tools
	Slide 58: Demo: Using Ruby
	Slide 59: Request Methods
	Slide 60: HTTP is Stateless
	Slide 61: HTTP Session
	Slide 62: HTTP Session
	Slide 63: HTTP Session
	Slide 64: HTTP Session
	Slide 65: HTTP Cookies
	Slide 66: Summary

