
Computer Science and Engineering ◼ The Ohio State University

To Ponder

What is a language?

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Regular Expressions

Lecture 6

Computer Science and Engineering ◼ The Ohio State University

Language

 Definition: a set of strings

 Examples

◼ ℒ1 = "cat", "dog", "fish"

◼ ℒ2 = 𝛼𝛽 𝛼 and 𝛽 are hex digits

◼ ℒ3 = 𝛼1𝛼2𝛼3…𝛼𝑛 𝑛 > 0 ∧ ∀𝑖=1
𝑛−1 𝛼𝑖 = 𝛼𝑖+1

 Activity: For each ℒ above, find

◼ ℒ (the cardinality of the set)

◼ max
𝜎∈ℒ

𝜎

Computer Science and Engineering ◼ The Ohio State University

Programming Languages

 Q: Are C, Java, Ruby, Python, …

languages in this formal sense?

Computer Science and Engineering ◼ The Ohio State University

Programming Languages

 Q: Are C, Java, Ruby, Python, …

languages in this formal sense?

 A: Yes!

◼ ℒ𝑅𝑢𝑏𝑦 is the set of well-formed Ruby programs

◼ What the interpreter (compiler) accepts

◼ The syntax of the language

 But what does one such string mean?

◼ The semantics of the language

◼ Not part of formal definition of “language”

◼ But necessary to know to claim “I know Ruby”

Computer Science and Engineering ◼ The Ohio State University

Regular Expression (RE)

 A formal mechanism for defining a
language

◼ Precise, unambiguous, well-defined

 In math, a clear distinction between:

◼ Characters in string (the “alphabet”)

◼ Metacharacters used to write a RE

𝑎ڂ𝑏 ∗𝑎 𝑎ڂ𝑏 𝑎ڂ𝑏 𝑎ڂ𝑏

 In computer applications, there isn't

◼ Is '*' a Kleene star or an asterisk?
(a|b)*a(a|b)(a|b)(a|b)

Computer Science and Engineering ◼ The Ohio State University

Literals

 A literal represents a character from
the alphabet

 Some are easy:
◼ f, i, s, h, …

 Whitespace is hard (invisible!)
◼ \t is a tab (ascii 0x09)

◼ \n is a newline (ascii 0x0A)

◼ \r is a carriage return (ascii 0x0D)

 So the character '\' needs to be
escaped!

 \\ is a \ (ascii 0x5c)

Computer Science and Engineering ◼ The Ohio State University

Basic Operators

 () for grouping, | for choice

 Examples
◼ cat|dog|fish

◼ (h|H)ello

◼ R(uby|ails)

◼ (G|g)r(a|e)y

 These operators are meta-characters too
◼ To represent the literal: \(\) \|

◼ \(61(3|4)\)

 Activity: For each RE above, write out the
corresponding language explicitly (ie, as a
set of strings)

Computer Science and Engineering ◼ The Ohio State University

Character Class

 Set of possible characters

◼ (0|1|2|3|4|5|6|7|8|9) is annoying!

 Syntax: []

◼ Explicit list as [0123456789]

◼ Range as [0-9]

 Negate with ^ at the beginning

◼ [^A-Z] a character that is not a capital letter

 Activity: Write the language defined by
◼ Gr[ae]y

◼ 0[xX][0-9a-fA-F]

◼ [Qq][^u]

Computer Science and Engineering ◼ The Ohio State University

Character Class Shorthands

 Common
◼ \d for digit, ie [0-9]

◼ \s for whitespace, ie [\t\r\n]

◼ \w for word character, ie [0-9a-zA-Z_]

 And negations too
◼ \D, \S, \W (ie [^\d], [^\s], [^\w])
◼ Warning: [^\d\s] ≠ [\D\S]

 POSIX standard (& Ruby) includes
◼ [[:alpha:]] alphabetic character

◼ [[:lower:]] lowercase alphabetic character
◼ [[:digit:]] decimal digit (in any script)
◼ [[:xdigit:]] hexadecimal digit

◼ [[:space:]] whitespace including newlines

Computer Science and Engineering ◼ The Ohio State University

Wildcards

 A . matches any character (almost)

◼ Includes space, tab, punctuation, etc

◼ But does not include newline

 So add . to list of metacharacters
◼ Use \. for a literal period

 Examples
◼ Gr.y

◼ buckeye\.\d

 Problem: What is RE for OSU email
address for everyone named Smith?
◼ Answer is not: smith\.\d@osu\.edu

Computer Science and Engineering ◼ The Ohio State University

Repetition

 Applies to preceding thing (character,
character class, or () group)

◼ ? means 0 or 1 time

◼ * means 0 or more times (unbounded)

◼ + means 1 or more times (unbounded)

◼ {k} means exactly k times

◼ {a,b} means k times, for a ≤ k ≤ b

 More meta-characters to escape!
◼ \? * \+ \{ \}

Computer Science and Engineering ◼ The Ohio State University

Examples

 colou?r

 smith\.[1-9]\d*@osu\.edu

 0[xX](0|[1-9a-fA-F][0-9a-fA-F]*)

 .*\.jpe?g

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 (Language consisting of) strings that:

◼ Contain only letters, numbers, and _

◼ Start with a letter

◼ Do not contain 2 consecutive _'s

◼ Do not end with _

 Exemplars and counter-exemplars:
◼ EOF, 4Temp, Test_Case3, _class,

a4_Sap_X, S__T_2

 Write the corresponding RE

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 (Language consisting of) strings that:

◼ Contain only letters, numbers, and _

◼ Start with a letter

◼ Do not contain 2 consecutive _'s

◼ Do not end with _

 Exemplars and counter-exemplars:
◼ EOF, 4Temp, Test_Case3, _class,

a4_Sap_X, S__T_2

 Write the corresponding RE

Computer Science and Engineering ◼ The Ohio State University

Your Turn (Solution)

 (Language consisting of) strings that:

◼ Contain only letters, numbers, and _

◼ Start with a letter

◼ Do not contain 2 consecutive _'s

◼ Do not end with _

 Exemplars and counter-exemplars:
◼ EOF, 4Temp, Test_Case3, _class,

a4_Sap_X, S__T_2

 Write the corresponding RE
[a-zA-Z](_[a-zA-Z0-9]|[a-zA-Z0-9])*

Computer Science and Engineering ◼ The Ohio State University

Finite State Automota (FSA)

 An FSA is an accepting machine

◼ Finite set of states

◼ Transition function (relation) between
states based on next character in string

 DFA vs NFA

◼ Start state (s0)

◼ Set of accepting states

 An FSA accepts a string if you can start
in s0 and end up in an accepting state,
consuming 1 character per step

Computer Science and Engineering ◼ The Ohio State University

Example

 What language is defined by this FSA?

S0 S1

1 10

0

Computer Science and Engineering ◼ The Ohio State University

Example

 What language is defined by this FSA?

 A. Binary strings (0's and 1's) with an
even number of 0's

S0 S1

1 10

0

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 (Language consisting of) strings that:

◼ Contain only letters, numbers, and _

◼ Start with a letter

◼ Do not contain 2 consecutive _'s

◼ Do not end with _

 Exemplars and counter-exemplars:
◼ EOF, 4Temp, Test_Case3, _class,

a4_Sap_X, S__T_2

 Write the corresponding FSA

Computer Science and Engineering ◼ The Ohio State University

Solution

Computer Science and Engineering ◼ The Ohio State University

Solution (Solution)

S0 S1

_

a-zA-Z

a-zA-Z0-9

S2

a-zA-Z0-9

Computer Science and Engineering ◼ The Ohio State University

Fundamental Results

 Expressive power of RE is the same as
FSA

 Expressive power of RE is limited

◼ Write a RE for “strings of balanced parens”

 ()(()()), ()(), (((()))), …

 (((, ())((), …

◼ Can not be done! (impossibility result)

 Take CSE 3321…

Computer Science and Engineering ◼ The Ohio State University

REs in Practice

 REs often used to find a “match”

◼ A substring s within a longer string such
that s is in the language defined by the RE

(CSE|cse) ?3901

 Possible uses:

◼ Report matching substrings and locations

◼ Replace match with something else

 Practical aspects of using REs this way

◼ Anchors

◼ Greedy vs lazy matching

Computer Science and Engineering ◼ The Ohio State University

Anchors

 Used to specify where matching string
should be with respect to a line of text

 Newlines are natural breaking points
◼ ^ anchors to the beginning of a line

◼ $ anchors to the end of a line

◼ Ruby: \A \z for beginning/end of string

 Examples
^Hello World$

\A[Tt]he

^[^\d].\.jpe?g

end\.\z

Computer Science and Engineering ◼ The Ohio State University

Greedy vs Lazy

 Repetition (+ and *) means multiple
matches might begin at same place
◼ Example: <.*>

<h1>Title</h1>

<h1>Title</h1>

 The match selected depends on
whether the repetition matching is
◼ greedy, ie matches as much as possible

◼ lazy, ie matches as little as possible

 Default is typically greedy

 For lazy matching, use *? or +?

Computer Science and Engineering ◼ The Ohio State University

Regular Expressions in Ruby

 Instance of a class (Regexp)
pattern = Regexp.new('^Rub.')

 But literal notation is common: /pattern/
/[aeiou]*/

%r{hello+} # no need to escape /

 Options post-pended: /pattern/options
◼ i ignore case
◼ x ignore whitespace, comments (“free spacing”)

 Match operator =~ (negated as !~)
◼ Operands: String and Regexp (in either order)
◼ Returns index of first match (or nil if not present)
'hello world' =~ /o/ #=> 4

/or/ =~ 'hello' #=> nil

 Case equality, Regexp === String, → Boolean

Computer Science and Engineering ◼ The Ohio State University

Strings and Regular Expressions

 Find all matches as an array
s.scan /[[:alpha:]]/

 Delimeter for spliting string into array
s.split /[aeiou]/

 Substitution: sub and gsub (+/- !)
◼ Replace first match vs all (“globally”)

s = 'the quick brown fox'

s.sub /[aeiou]/, '@'

#=> "th@ quick brown fox"

s.gsub /[aeiou]/, '@'

#=> "th@ q@@ck br@wn f@x"

Computer Science and Engineering ◼ The Ohio State University

Your Turn: REs in Ruby

 Check if phone number in valid format
phone = '614-292-2900' # bad

phone = '(614) 292-2900' # good

format = ? # replace ? with a RE

if phone ? format # replace ? with op

phone is well-formatted string

…

Computer Science and Engineering ◼ The Ohio State University

Summary

 Language: A set of strings

 RE: Defines a language
◼ Recipe for making elements of language

 Literals
◼ Distinguish characters and metacharacters

 Character classes
◼ Represent 1 character in RE

 Repetition

 FSA
◼ Expressive power same as RE

	Slide 1: To Ponder
	Slide 2: Regular Expressions
	Slide 3: Language
	Slide 4: Programming Languages
	Slide 5: Programming Languages
	Slide 6: Regular Expression (RE)
	Slide 7: Literals
	Slide 8: Basic Operators
	Slide 9: Character Class
	Slide 10: Character Class Shorthands
	Slide 11: Wildcards
	Slide 12: Repetition
	Slide 13: Examples
	Slide 14: Your Turn
	Slide 15: Your Turn
	Slide 16: Your Turn (Solution)
	Slide 17: Finite State Automota (FSA)
	Slide 18: Example
	Slide 19: Example
	Slide 20: Your Turn
	Slide 21: Solution
	Slide 22: Solution (Solution)
	Slide 23: Fundamental Results
	Slide 24: REs in Practice
	Slide 25: Anchors
	Slide 26: Greedy vs Lazy
	Slide 27: Regular Expressions in Ruby
	Slide 28: Strings and Regular Expressions
	Slide 29: Your Turn: REs in Ruby
	Slide 31: Summary

