
Computer Science and Engineering ◼ The Ohio State University

To Ponder

Evaluate the ?'s

x = Array.new 3, 5 #=> [5, 5, 5]

x[0] += 1

x #=> ???

y = Array.new 3, [] #=> [[],[],[]]

y[0] << 'hi' # adds elt to array

y #=> ???

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Useful Classes and Methods

Lecture 5

Computer Science and Engineering ◼ The Ohio State University

Ranges

 Instance of class (Range)
indices = Range.new(0, 5)

 But literal syntax is more common
nums = 1..10 # end inclusive

b = 'cab'...'cat' # end exclusive

 Method to_a converts a range to an array
nums.to_a #=> [1,2,3,4,5,6,7,8,9,10]

(0..5).to_a #=> [0,1,2,3,4,5]

(5..0).to_a #=> []

 Methods begin/end, first/last
b.last #=> "cat", excluded from range!

b.last 2 #=> ["car", "cas"]

Computer Science and Engineering ◼ The Ohio State University

Range Inclusion

 Operator === (aka “case equality”)
nums === 6 #=> true

b === 'cat' #=> false

 Two methods: include? cover?
◼ include? (usually) iterates through range,

looking for (object value) equality
◼ cover? compares to end points

 Case statement (case/when) with ranges
case target

when 0...mid

puts 'first half'

when mid...size

puts 'second half'

end

Computer Science and Engineering ◼ The Ohio State University

Strings

 A rich class: 100+ methods!
◼ See www.ruby-doc.org

 Note convention on method names
◼ ? suffix: polar result (e.g., boolean)

◼ ! suffix: dangerous (e.g., changes receiver)

 Examples
◼ empty? start_with? include? length

◼ to_f, to_i, split # convert string to…

◼ upcase downcase capitalize # +/- !

◼ clear replace # no ! (!!)

◼ chomp chop slice # +/- !

◼ sub gsub # +/- !

https://ruby-doc.org/core-3.0.1/String.html

Computer Science and Engineering ◼ The Ohio State University

Examples

s = 'hello world'

s.start_with? 'hi' #=> false

s.length #=> 11

'3.14'.to_f #=> 3.14

s.upcase #=> "HELLO WORLD", s unchanged

s.capitalize! #=> s is now "Hello world"

s.split #=> ["Hello", "world"]

s.split 'o' #=> ["Hell", " w", "rld"]

s.replace 'good bye' #=> s is "good bye"

s.slice 3, 4 #=> "d by" (start, length)

s[-2, 1] #=> "y" [start, length]

s.chomp! #=> remove trailing \n if there

Computer Science and Engineering ◼ The Ohio State University

Arrays

 Instance of class (Array)
a = Array.new 4 #=> [nil, nil, nil, nil]

a = Array.new 4, 0 #=> [0, 0, 0, 0]

 But literal notation is common
b = [6, 2, 3.14, 'pi', []]

t = %w{hi world} #=> ["hi", "world"]

 Methods for element access, modification
b.length #=> 5

b[0] #=> 6 (also b.first, b.last)

b[-2] #=> "pi"

b[10] = 4 # assignment past end of array

b.length #=> 11, size has changed!

b[2, 5] #=> [3.14, "pi", [], nil, nil]

Computer Science and Engineering ◼ The Ohio State University

Mutators: Growing/Shrinking

 Add/remove from end: push/pop (<<)
n = [10, 20]

n.push 30, 40 #=> [10, 20, 30, 40]

n.pop #=> 40, n now [10, 20, 30]

n << 50 #=> [10, 20, 30, 50]

 Add/remove from beginning:
unshift/shift
n = [10, 20]

n.unshift 30, 40 #=> [30, 40, 10, 20]

n.shift #=> 30

 Push/shift gives FIFO queue

 All modify the receiver (but no !)

Computer Science and Engineering ◼ The Ohio State University

Concatenation and Difference

 Concatenation: +/concat

n = [1]

n.concat [3, 4] #=> [1, 3, 4]

[5, 1] + [5, 2, 3] #=> [5, 1, 5, 2, 3]

n.push [3, 4] #=> [1, 3, 4, [3, 4]]

 Difference: -

n = [1, 1, 3, 3, 4, 5]

n - [1, 2, 4] #=> [3, 3, 5]

 Concat modifies receiver, +/- do not

Computer Science and Engineering ◼ The Ohio State University

And Many More

 Element order
[1, 2, 3, 4].reverse #=> [4, 3, 2, 1]

[1, 2, 3, 4].rotate #=> [2, 3, 4, 1]

[1, 2, 3, 4].shuffle #=> [2, 1, 4, 3]

[3, 4, 2, 1].sort #=> [1, 2, 3, 4]

 Search
[7, 3, 5, 7, 0].find_index 7 #=> 0

[7, 3, 5, 7, 0].rindex 7 #=> 3

[7, 3, 5, 7, 0].include? 0 #=> true

 Transformation
[1, 2, 2, 3, 1].uniq #=> [1, 2, 3]

[1, 2].fill 'a' #=> ["a", "a"], N.B. aliases!

['a', 'bbb', 'c'].join "_" #=> "a_bbb_c"

[1,2].product [3,4] #=> [[1,3],[1,4],[2,3],[2,4]]

[[1, 2], [3, 4], [5, 6]].transpose

#=> [[1, 3, 5], [2, 4, 6]]

Computer Science and Engineering ◼ The Ohio State University

To Ponder

Evaluate the ?'s

x = Array.new 3, 5 #=> [5, 5, 5]

x[0] += 1

x #=> ???

y = Array.new 3, [] #=> [[],[],[]]

y[0] << 'hi' # adds elt to array

y #=> ???

Computer Science and Engineering ◼ The Ohio State University

Example

 Generate a random sequence of 8
lower case letters, without repetition

 E.g., "minbevtj"

Computer Science and Engineering ◼ The Ohio State University

Example

 Write a program that reads in a list of
names from stdin (keyboard), then
prints out the list in alphabetical order
in all-caps

 Hint:
◼ Use gets to read input from stdin

◼ Returns String up to and including newline
(nil if ^d)

>> x = gets

Hello world

=> "Hello world\n"

Computer Science and Engineering ◼ The Ohio State University

Example: A Solution

index = 0

names = Array.new

while name = gets

name.chomp!.upcase!

names[index] = name

index += 1

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Array Literal

index = 0

names = []

while name = gets

name.chomp!.upcase!

names[index] = name

index += 1

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Extend Array

index = 0

names = []

while name = gets

names[index] = name.chomp.upcase

index += 1

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Push

names = []

while name = gets

names.push name.chomp.upcase

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Push Operator

names = []

while name = gets

names << name.chomp.upcase

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Statement Modifier

names, name = [], ""

names << name.chomp.upcase

while name = gets

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Summary

 Naming convention for methods
◼ Mutators marked with !, polar with ?

 Ranges
◼ Inclusive, exclusive, operator ===

◼ Case/when can use ranges

 Strings
◼ Mutable (c.f. Java)

 Arrays
◼ Can grow and shrink

Computer Science and Engineering ◼ The Ohio State University

Splat "Operator" *

 Split/gather arrays/elements
◼ Not really an operator, must be outermost

 Parallel assignment splits/gathers a little
a, b = [1, 2] #=> a, b == 1, 2

array = 1, 2, 3 #=> array == [1, 2, 3]

 On RHS, splats generalize split
a, b, c = 1, *[2, 3] #=> a,b,c == 1,2,3

 On LHS, splat generalizes gather
*r = 1 #=> [1]

a, b, *r = 1, 2, 3, 4 #=> r == [3, 4]

a, b, *r = [1, 2, 3, 4] #=> r == [3, 4]

a, b, *r = 1, 2, 3 #=> r == [3]

Computer Science and Engineering ◼ The Ohio State University

Splat in Function Definition/Use

 Ruby enforces: number of arguments
equals number of parameters

 In function definitions, splat can gather
up remaining arguments (ie var args)

def greet(msg, *names)

names.each { |name|

puts "#{msg} #{name}!" }

end

greet 'Ciao', 'Rafe', 'Sarah', 'Xi'

 In function calls, splat explodes arrays
into multiple arguments

people = ['Rafe', 'Sarah', 'Xi']

greet 'Hi', *people

Computer Science and Engineering ◼ The Ohio State University

To Ponder

 Given an array of integers

 Produce the array that includes only
the even elements, each squared

 Example:

◼ Given

[1, 2, 3, 7, 7, 1, 4, 5, 6, 2]

◼ Result

[4, 16, 36, 4]

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Blocks, Hashes, and Symbols

Computer Science and Engineering ◼ The Ohio State University

Blocks

 A block is a statement(s) passed in as
an argument to a function

5.times do

puts 'hello world'

end

◼ Equivalent, but more succinct:

5.times { puts 'hello world' }

 A block can, itself, have parameters!
5.times { |n| puts n**2 }

◼ Method calls block, passing in arguments

Computer Science and Engineering ◼ The Ohio State University

Calling Blocks

 Within a function, the passed-in block
is called with keyword “yield”
def fib_up_to(max)

i1, i2 = 1, 1

while i1 <= max

yield i1 if block_given?

i1, i2 = i2, i1 + i2

end

end

fib_up_to(1000) { |f| print "#{f} " }

fib_up_to(1000) { |f| sum += f }

Computer Science and Engineering ◼ The Ohio State University

Idioms for Blocks

 Bracketed code (eg open, do stuff, close)
File.open('notes.txt', 'w') do |file|

file << 'work on 3901 project'

end # file closed by open method

 Nested scope (eg for initialization code)
agent = Mechanize.new do |a|

a.log = Logger.new ('log.txt')

a.user_agent_alias = 'Mac Safari'

end # isolates init'n code and temp var a

 Iteration (very common)…

Computer Science and Engineering ◼ The Ohio State University

Simple Iteration

 While/until loop: Boolean condition
while boolean_condition

…

end

 For-in loop: iterate over arrays (and other
things like ranges)
for var in array

…

end

◼ Example
for str in 'hi'..'yo'

puts str.upcase

end

◼ Usually avoided (rubystyle.guide/#no-for-loops)

https://rubystyle.guide/

Computer Science and Engineering ◼ The Ohio State University

Iterating on Arrays Using Blocks

 Do something with every element
a.each { |str| puts str.upcase }

 Do something with every index
a.each_index { |i| print "#{i}--" }

 Fill array with computed values
a.fill { |i| i * i }

a.fill { |i| [] } # or omit i: { |_| [] }

 Search
a.index { |x| x > limit }

 Filter
a.select! { |v| v =~ /[aeiou]/ }

a.reject! { |v| v =~ /[aeiou]/ } # aka filter

 Sort
a.sort! { |x, y| x.length <=> y.length }

Computer Science and Engineering ◼ The Ohio State University

Map

 Transform an array into a new array,
element by element

 Uses block to calculate each new value
a.map { |item| block } # also !

a

resulting
array

item

block

Computer Science and Engineering ◼ The Ohio State University

Map: Examples

names = %w{ali noah marco xi}

#=> ["ali", "noah", "marco", "xi"]

names.map { |name| name.capitalize }

#=> ["Ali", "Noah", "Marco", "Xi"]

names.map { |name| name.length }

#=> [3, 4, 5, 2]

[1, 2, 3, 4].map { |i| i**2 }

#=> [1, 4, 9, 16]

[1, 2, 3, 4].map { |i| "x^#{i}" }

#=> ["x^1", "x^2", "x^3", "x^4"]

Computer Science and Engineering ◼ The Ohio State University

Reduce

 Transform an array into a single value,
by incorporating one element at a time

◼ Also called “fold”, or “inject”

 Uses block with 2 arguments: current
accumulation and next array element
a.reduce(init) { |acc, item| block }

◼ Value returned by block is the next acc

◼ a[0] is initial acc, if init not provided

 Example: Sum the values of an array

◼ [15, 10, 8] → 0 + 15 + 10 + 8 → 33

Computer Science and Engineering ◼ The Ohio State University

Reduction Chain

a

resulting
value

item

block

acc

init

Computer Science and Engineering ◼ The Ohio State University

Reduce: Examples

[3, 4, 5].reduce { |sum, i| sum + i } #=> 12

[1, 2, 3, 4, 5].reduce '' do |str, i|

str + i.to_s

end #=> "12345"

words = %w{cat sheep bear}

words.reduce do |memo, word|

memo.length > word.length ? memo : word

end #=> "sheep"

[1, 2, 3].reduce [] do |acc, i|

acc.unshift i

end #=> ???

Computer Science and Engineering ◼ The Ohio State University

Module: Enumerable

 Quantify over elements
['hi', 'yo!'].all? { |w| w.length > 2 }

(0..100).any? { |x| x < 0 } #=> false

[1, 2, 3].none? { |x| x % 2 == 0 }

 Min/Max
words.max_by { |x| x.length }

 Search
(1..10).find_all { |i| i % 3 == 0 }

#=> [3, 6, 9]

 Map/reduce (only non-! version)
(5..8).map { 2 } #=> [2, 2, 2, 2]

(1..10).reduce(:+) #=> 55

book.reduce(0) { |sum, w| sum + w.length}

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Given a string

 Produce an array of indices where ‘#’
occurs in the string

 Example:

◼ Given

'a#asg#sdfg#d##'

◼ Result

[1, 5, 10, 12, 13]

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Given an array of integers

 Produce the array that includes only
the even elements, each squared

 Example:

◼ Given

[1, 2, 3, 7, 7, 1, 4, 5, 6, 2]

◼ Result

[4, 16, 36, 4]

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Given an array of (a mix of) integers
and array of integers, where the (top
level) integers are unique

 Remove from the contained arrays all
occurrences of the top level integers

 Example:

◼ Given

[3, 5, [4, 5, 9], 1, [1, 2, 3, 8, 9]]

◼ Result

[3, 5, [4, 9], 1, [2, 8, 9]]

Computer Science and Engineering ◼ The Ohio State University

Example: What Does This Do?

words = File.open('tomsawyer.txt') { |f|

f.read }.split

freq, max = [], ''

words.each do |w|

max = w if w.length > max.length

freq[w.length] = 0 if !freq[w.length]

freq[w.length] += 1

end

puts words.length

puts words.reduce(0) { |s, w| s + w.length }

freq.each_index do |i|

puts "#{i}-letter words #{freq[i]}"

end

puts max

Computer Science and Engineering ◼ The Ohio State University

Hashes

 Partial map: keys → values
◼ Keys must be unique

 Indexed with array syntax []
h['hello'] = 5

 Literal syntax for initialization
h = {'red' => 0xf00,

'green' => 0x0f0,

'blue' => 0x00f }

 Optional: Instantiate with a default value
(or block)

h1 = Hash.new 0 #=> beware aliases

h2 = Hash.new { |h, k| h[k] = k + k }

Computer Science and Engineering ◼ The Ohio State University

Using Hashes

h = {'age' => 21} # create new Hash

h['age'] += 1 # mutable values

h['id'] = 0x2a # can grow

h.size #=> 2

h['name'] = 'Luke' # heterog. values

h[4.3] = [1, 3, 5] # heterog. keys

h.delete 'id' # can shrink

h == {'age' => 22,

'name' => 'Luke',

4.3 => [1, 3, 5]}

Computer Science and Engineering ◼ The Ohio State University

Example

list = %w{cake bake cookie car apple}

Group by string length:

groups = Hash.new{ |h, k| h[k] = [] }

list.each { |v|

groups[v.length] << v

}

groups == { 4 => ["cake", "bake"],

6 => ["cookie"],

3 => ["car"], 5 => ["apple"] }

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Write the Ruby code that, given an
array of strings, computes frequency
of occurrence of each word

 Example:

◼ Given

["car", "van", "car", "car"]

◼ Compute

{"car" => 3, "van" => 1}

Computer Science and Engineering ◼ The Ohio State University

Example

list = %w{car van car car}

Your code here

groups #=> {"car" => 3, "van" => 1}

Computer Science and Engineering ◼ The Ohio State University

Using Blocks with Hashes

 Do something with every key/value
pair
h.each {|k, v| print "(#{k},#{v})"}

 Do something with every key or value
h.each_key { |k| print "#{k}--" }

h.each_value { |v| print "#{v}--" }

 Combine two hashes
h1.merge(h2) { |k, v1, v2| v2 – v1 }

 Filter
a.delete_if { |k, v| v =~ /[aeiou]/ }

a.keep_if { |k, v| v =~ /[aeiou]/ }

Computer Science and Engineering ◼ The Ohio State University

Immutability of Keys

 Rule: Once a key is in a hash, never

change its value
grades[student] = 'C+'

student.wake_up! # danger

 Problem: Aliases

 “Solution”: For strings, Ruby copies (and
freezes) a string when added to a hash
a, b = String.new('fs'), String.new('sn')

h = {a => 34, b => 44}

puts a.object_id, b.object_id

h.each_key { |key| puts key.object_id }

Computer Science and Engineering ◼ The Ohio State University

Symbols

 Roughly: unique & immutable strings

 Syntax: prefix with ":"
:height

:'some symbol'

:"#{name}'s crazy idea"

 Easy (too easy?) to convert between
symbols and strings
:name.to_s #=> "name"

'name'.to_sym #=> :name

 But symbols are not strings
:name == 'name' #=> false

Computer Science and Engineering ◼ The Ohio State University

Operational View

 A symbol is created once, and all uses
refer to that same object (aliases)

 Symbols are immutable

 Example
[].object_id #=> 200

[].object_id #=> 220

[].equal? [] #=> false

:world.object_id #=> 459528

:world.object_id #=> 459528

:world.equal? :world #=> true

Computer Science and Engineering ◼ The Ohio State University

Symbols as Hash Keys

 Literal notation, but note colon location!
colors = {red: 0xf00,

green: 0x0f0,

blue: 0x00f}

 This is just syntactic sugar

◼ {name: value} same as {:name => value}

◼ The key is a symbol (eg :red)

 Pitfalls
colors.red #=> NoMethodError

colors["red"] #=> nil

colors[:red] #=> 3840 (ie 0xf00)

Computer Science and Engineering ◼ The Ohio State University

Keyword Arguments

 Alternative to positional matching of
arguments with formal parameters
def display(first:, last:)

puts "Hello #{first} #{last}"

end

display first: 'Mork', last: 'Ork'

display last: 'Hawking', first: 'Steven'

 Providing a default value makes that
argument optional
def greet(title: 'Dr.', name:)

puts "Hello #{title} #{name}"

end

 Benefits: Client code is easier to read,
and flexibility in optional arguments

Computer Science and Engineering ◼ The Ohio State University

Summary

 Blocks
◼ Code passed as argument to a function

◼ Elegant iteration over arrays

 Enumerable
◼ Many useful iteration methods

 Hashes
◼ Partial maps (aka associative arrays)

 Symbols
◼ Unique, immutable strings

◼ Often used as keys in hashes

	Slide 1: To Ponder
	Slide 3: Ruby: Useful Classes and Methods
	Slide 4: Ranges
	Slide 5: Range Inclusion
	Slide 6: Strings
	Slide 7: Examples
	Slide 9: Arrays
	Slide 10: Mutators: Growing/Shrinking
	Slide 11: Concatenation and Difference
	Slide 12: And Many More
	Slide 13: To Ponder
	Slide 15: Example
	Slide 17: Example
	Slide 18: Example: A Solution
	Slide 19: Refactor: Array Literal
	Slide 20: Refactor: Extend Array
	Slide 21: Refactor: Push
	Slide 22: Refactor: Push Operator
	Slide 23: Refactor: Statement Modifier
	Slide 24: Summary
	Slide 25: Splat "Operator" *
	Slide 26: Splat in Function Definition/Use
	Slide 29: To Ponder
	Slide 30: Ruby: Blocks, Hashes, and Symbols
	Slide 31: Blocks
	Slide 32: Calling Blocks
	Slide 33: Idioms for Blocks
	Slide 34: Simple Iteration
	Slide 35: Iterating on Arrays Using Blocks
	Slide 36: Map
	Slide 37: Map: Examples
	Slide 38: Reduce
	Slide 39: Reduction Chain
	Slide 40: Reduce: Examples
	Slide 41: Module: Enumerable
	Slide 42: Your Turn
	Slide 44: Your Turn
	Slide 46: Your Turn
	Slide 48: Example: What Does This Do?
	Slide 49: Hashes
	Slide 50: Using Hashes
	Slide 51: Example
	Slide 52: Your Turn
	Slide 53: Example
	Slide 55: Using Blocks with Hashes
	Slide 56: Immutability of Keys
	Slide 57: Symbols
	Slide 58: Operational View
	Slide 59: Symbols as Hash Keys
	Slide 61: Keyword Arguments
	Slide 62: Summary

