
Computer Science and Engineering ◼ The Ohio State University

To Ponder

Evaluate the ?'s

x = Array.new 3, 5 #=> [5, 5, 5]

x[0] += 1

x #=> ???

y = Array.new 3, [] #=> [[],[],[]]

y[0] << 'hi' # adds elt to array

y #=> ???

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Useful Classes and Methods

Lecture 5

Computer Science and Engineering ◼ The Ohio State University

Ranges

 Instance of class (Range)
indices = Range.new(0, 5)

 But literal syntax is more common
nums = 1..10 # end inclusive

b = 'cab'...'cat' # end exclusive

 Method to_a converts a range to an array
nums.to_a #=> [1,2,3,4,5,6,7,8,9,10]

(0..5).to_a #=> [0,1,2,3,4,5]

(5..0).to_a #=> []

 Methods begin/end, first/last
b.last #=> "cat", excluded from range!

b.last 2 #=> ["car", "cas"]

Computer Science and Engineering ◼ The Ohio State University

Range Inclusion

 Operator === (aka “case equality”)
nums === 6 #=> true

b === 'cat' #=> false

 Two methods: include? cover?
◼ include? (usually) iterates through range,

looking for (object value) equality
◼ cover? compares to end points

 Case statement (case/when) with ranges
case target

when 0...mid

puts 'first half'

when mid...size

puts 'second half'

end

Computer Science and Engineering ◼ The Ohio State University

Strings

 A rich class: 100+ methods!
◼ See www.ruby-doc.org

 Note convention on method names
◼ ? suffix: polar result (e.g., boolean)

◼ ! suffix: dangerous (e.g., changes receiver)

 Examples
◼ empty? start_with? include? length

◼ to_f, to_i, split # convert string to…

◼ upcase downcase capitalize # +/- !

◼ clear replace # no ! (!!)

◼ chomp chop slice # +/- !

◼ sub gsub # +/- !

https://ruby-doc.org/core-3.0.1/String.html

Computer Science and Engineering ◼ The Ohio State University

Examples

s = 'hello world'

s.start_with? 'hi' #=> false

s.length #=> 11

'3.14'.to_f #=> 3.14

s.upcase #=> "HELLO WORLD", s unchanged

s.capitalize! #=> s is now "Hello world"

s.split #=> ["Hello", "world"]

s.split 'o' #=> ["Hell", " w", "rld"]

s.replace 'good bye' #=> s is "good bye"

s.slice 3, 4 #=> "d by" (start, length)

s[-2, 1] #=> "y" [start, length]

s.chomp! #=> remove trailing \n if there

Computer Science and Engineering ◼ The Ohio State University

Arrays

 Instance of class (Array)
a = Array.new 4 #=> [nil, nil, nil, nil]

a = Array.new 4, 0 #=> [0, 0, 0, 0]

 But literal notation is common
b = [6, 2, 3.14, 'pi', []]

t = %w{hi world} #=> ["hi", "world"]

 Methods for element access, modification
b.length #=> 5

b[0] #=> 6 (also b.first, b.last)

b[-2] #=> "pi"

b[10] = 4 # assignment past end of array

b.length #=> 11, size has changed!

b[2, 5] #=> [3.14, "pi", [], nil, nil]

Computer Science and Engineering ◼ The Ohio State University

Mutators: Growing/Shrinking

 Add/remove from end: push/pop (<<)
n = [10, 20]

n.push 30, 40 #=> [10, 20, 30, 40]

n.pop #=> 40, n now [10, 20, 30]

n << 50 #=> [10, 20, 30, 50]

 Add/remove from beginning:
unshift/shift
n = [10, 20]

n.unshift 30, 40 #=> [30, 40, 10, 20]

n.shift #=> 30

 Push/shift gives FIFO queue

 All modify the receiver (but no !)

Computer Science and Engineering ◼ The Ohio State University

Concatenation and Difference

 Concatenation: +/concat

n = [1]

n.concat [3, 4] #=> [1, 3, 4]

[5, 1] + [5, 2, 3] #=> [5, 1, 5, 2, 3]

n.push [3, 4] #=> [1, 3, 4, [3, 4]]

 Difference: -

n = [1, 1, 3, 3, 4, 5]

n - [1, 2, 4] #=> [3, 3, 5]

 Concat modifies receiver, +/- do not

Computer Science and Engineering ◼ The Ohio State University

And Many More

 Element order
[1, 2, 3, 4].reverse #=> [4, 3, 2, 1]

[1, 2, 3, 4].rotate #=> [2, 3, 4, 1]

[1, 2, 3, 4].shuffle #=> [2, 1, 4, 3]

[3, 4, 2, 1].sort #=> [1, 2, 3, 4]

 Search
[7, 3, 5, 7, 0].find_index 7 #=> 0

[7, 3, 5, 7, 0].rindex 7 #=> 3

[7, 3, 5, 7, 0].include? 0 #=> true

 Transformation
[1, 2, 2, 3, 1].uniq #=> [1, 2, 3]

[1, 2].fill 'a' #=> ["a", "a"], N.B. aliases!

['a', 'bbb', 'c'].join "_" #=> "a_bbb_c"

[1,2].product [3,4] #=> [[1,3],[1,4],[2,3],[2,4]]

[[1, 2], [3, 4], [5, 6]].transpose

#=> [[1, 3, 5], [2, 4, 6]]

Computer Science and Engineering ◼ The Ohio State University

To Ponder

Evaluate the ?'s

x = Array.new 3, 5 #=> [5, 5, 5]

x[0] += 1

x #=> ???

y = Array.new 3, [] #=> [[],[],[]]

y[0] << 'hi' # adds elt to array

y #=> ???

Computer Science and Engineering ◼ The Ohio State University

Example

 Generate a random sequence of 8
lower case letters, without repetition

 E.g., "minbevtj"

Computer Science and Engineering ◼ The Ohio State University

Example

 Write a program that reads in a list of
names from stdin (keyboard), then
prints out the list in alphabetical order
in all-caps

 Hint:
◼ Use gets to read input from stdin

◼ Returns String up to and including newline
(nil if ^d)

>> x = gets

Hello world

=> "Hello world\n"

Computer Science and Engineering ◼ The Ohio State University

Example: A Solution

index = 0

names = Array.new

while name = gets

name.chomp!.upcase!

names[index] = name

index += 1

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Array Literal

index = 0

names = []

while name = gets

name.chomp!.upcase!

names[index] = name

index += 1

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Extend Array

index = 0

names = []

while name = gets

names[index] = name.chomp.upcase

index += 1

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Push

names = []

while name = gets

names.push name.chomp.upcase

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Push Operator

names = []

while name = gets

names << name.chomp.upcase

end

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Refactor: Statement Modifier

names, name = [], ""

names << name.chomp.upcase

while name = gets

puts 'The sorted array:'

puts names.sort

Computer Science and Engineering ◼ The Ohio State University

Summary

 Naming convention for methods
◼ Mutators marked with !, polar with ?

 Ranges
◼ Inclusive, exclusive, operator ===

◼ Case/when can use ranges

 Strings
◼ Mutable (c.f. Java)

 Arrays
◼ Can grow and shrink

Computer Science and Engineering ◼ The Ohio State University

Splat "Operator" *

 Split/gather arrays/elements
◼ Not really an operator, must be outermost

 Parallel assignment splits/gathers a little
a, b = [1, 2] #=> a, b == 1, 2

array = 1, 2, 3 #=> array == [1, 2, 3]

 On RHS, splats generalize split
a, b, c = 1, *[2, 3] #=> a,b,c == 1,2,3

 On LHS, splat generalizes gather
*r = 1 #=> [1]

a, b, *r = 1, 2, 3, 4 #=> r == [3, 4]

a, b, *r = [1, 2, 3, 4] #=> r == [3, 4]

a, b, *r = 1, 2, 3 #=> r == [3]

Computer Science and Engineering ◼ The Ohio State University

Splat in Function Definition/Use

 Ruby enforces: number of arguments
equals number of parameters

 In function definitions, splat can gather
up remaining arguments (ie var args)

def greet(msg, *names)

names.each { |name|

puts "#{msg} #{name}!" }

end

greet 'Ciao', 'Rafe', 'Sarah', 'Xi'

 In function calls, splat explodes arrays
into multiple arguments

people = ['Rafe', 'Sarah', 'Xi']

greet 'Hi', *people

Computer Science and Engineering ◼ The Ohio State University

To Ponder

 Given an array of integers

 Produce the array that includes only
the even elements, each squared

 Example:

◼ Given

[1, 2, 3, 7, 7, 1, 4, 5, 6, 2]

◼ Result

[4, 16, 36, 4]

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Blocks, Hashes, and Symbols

Computer Science and Engineering ◼ The Ohio State University

Blocks

 A block is a statement(s) passed in as
an argument to a function

5.times do

puts 'hello world'

end

◼ Equivalent, but more succinct:

5.times { puts 'hello world' }

 A block can, itself, have parameters!
5.times { |n| puts n**2 }

◼ Method calls block, passing in arguments

Computer Science and Engineering ◼ The Ohio State University

Calling Blocks

 Within a function, the passed-in block
is called with keyword “yield”
def fib_up_to(max)

i1, i2 = 1, 1

while i1 <= max

yield i1 if block_given?

i1, i2 = i2, i1 + i2

end

end

fib_up_to(1000) { |f| print "#{f} " }

fib_up_to(1000) { |f| sum += f }

Computer Science and Engineering ◼ The Ohio State University

Idioms for Blocks

 Bracketed code (eg open, do stuff, close)
File.open('notes.txt', 'w') do |file|

file << 'work on 3901 project'

end # file closed by open method

 Nested scope (eg for initialization code)
agent = Mechanize.new do |a|

a.log = Logger.new ('log.txt')

a.user_agent_alias = 'Mac Safari'

end # isolates init'n code and temp var a

 Iteration (very common)…

Computer Science and Engineering ◼ The Ohio State University

Simple Iteration

 While/until loop: Boolean condition
while boolean_condition

…

end

 For-in loop: iterate over arrays (and other
things like ranges)
for var in array

…

end

◼ Example
for str in 'hi'..'yo'

puts str.upcase

end

◼ Usually avoided (rubystyle.guide/#no-for-loops)

https://rubystyle.guide/

Computer Science and Engineering ◼ The Ohio State University

Iterating on Arrays Using Blocks

 Do something with every element
a.each { |str| puts str.upcase }

 Do something with every index
a.each_index { |i| print "#{i}--" }

 Fill array with computed values
a.fill { |i| i * i }

a.fill { |i| [] } # or omit i: { |_| [] }

 Search
a.index { |x| x > limit }

 Filter
a.select! { |v| v =~ /[aeiou]/ }

a.reject! { |v| v =~ /[aeiou]/ } # aka filter

 Sort
a.sort! { |x, y| x.length <=> y.length }

Computer Science and Engineering ◼ The Ohio State University

Map

 Transform an array into a new array,
element by element

 Uses block to calculate each new value
a.map { |item| block } # also !

a

resulting
array

item

block

Computer Science and Engineering ◼ The Ohio State University

Map: Examples

names = %w{ali noah marco xi}

#=> ["ali", "noah", "marco", "xi"]

names.map { |name| name.capitalize }

#=> ["Ali", "Noah", "Marco", "Xi"]

names.map { |name| name.length }

#=> [3, 4, 5, 2]

[1, 2, 3, 4].map { |i| i**2 }

#=> [1, 4, 9, 16]

[1, 2, 3, 4].map { |i| "x^#{i}" }

#=> ["x^1", "x^2", "x^3", "x^4"]

Computer Science and Engineering ◼ The Ohio State University

Reduce

 Transform an array into a single value,
by incorporating one element at a time

◼ Also called “fold”, or “inject”

 Uses block with 2 arguments: current
accumulation and next array element
a.reduce(init) { |acc, item| block }

◼ Value returned by block is the next acc

◼ a[0] is initial acc, if init not provided

 Example: Sum the values of an array

◼ [15, 10, 8] → 0 + 15 + 10 + 8 → 33

Computer Science and Engineering ◼ The Ohio State University

Reduction Chain

a

resulting
value

item

block

acc

init

Computer Science and Engineering ◼ The Ohio State University

Reduce: Examples

[3, 4, 5].reduce { |sum, i| sum + i } #=> 12

[1, 2, 3, 4, 5].reduce '' do |str, i|

str + i.to_s

end #=> "12345"

words = %w{cat sheep bear}

words.reduce do |memo, word|

memo.length > word.length ? memo : word

end #=> "sheep"

[1, 2, 3].reduce [] do |acc, i|

acc.unshift i

end #=> ???

Computer Science and Engineering ◼ The Ohio State University

Module: Enumerable

 Quantify over elements
['hi', 'yo!'].all? { |w| w.length > 2 }

(0..100).any? { |x| x < 0 } #=> false

[1, 2, 3].none? { |x| x % 2 == 0 }

 Min/Max
words.max_by { |x| x.length }

 Search
(1..10).find_all { |i| i % 3 == 0 }

#=> [3, 6, 9]

 Map/reduce (only non-! version)
(5..8).map { 2 } #=> [2, 2, 2, 2]

(1..10).reduce(:+) #=> 55

book.reduce(0) { |sum, w| sum + w.length}

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Given a string

 Produce an array of indices where ‘#’
occurs in the string

 Example:

◼ Given

'a#asg#sdfg#d##'

◼ Result

[1, 5, 10, 12, 13]

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Given an array of integers

 Produce the array that includes only
the even elements, each squared

 Example:

◼ Given

[1, 2, 3, 7, 7, 1, 4, 5, 6, 2]

◼ Result

[4, 16, 36, 4]

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Given an array of (a mix of) integers
and array of integers, where the (top
level) integers are unique

 Remove from the contained arrays all
occurrences of the top level integers

 Example:

◼ Given

[3, 5, [4, 5, 9], 1, [1, 2, 3, 8, 9]]

◼ Result

[3, 5, [4, 9], 1, [2, 8, 9]]

Computer Science and Engineering ◼ The Ohio State University

Example: What Does This Do?

words = File.open('tomsawyer.txt') { |f|

f.read }.split

freq, max = [], ''

words.each do |w|

max = w if w.length > max.length

freq[w.length] = 0 if !freq[w.length]

freq[w.length] += 1

end

puts words.length

puts words.reduce(0) { |s, w| s + w.length }

freq.each_index do |i|

puts "#{i}-letter words #{freq[i]}"

end

puts max

Computer Science and Engineering ◼ The Ohio State University

Hashes

 Partial map: keys → values
◼ Keys must be unique

 Indexed with array syntax []
h['hello'] = 5

 Literal syntax for initialization
h = {'red' => 0xf00,

'green' => 0x0f0,

'blue' => 0x00f }

 Optional: Instantiate with a default value
(or block)

h1 = Hash.new 0 #=> beware aliases

h2 = Hash.new { |h, k| h[k] = k + k }

Computer Science and Engineering ◼ The Ohio State University

Using Hashes

h = {'age' => 21} # create new Hash

h['age'] += 1 # mutable values

h['id'] = 0x2a # can grow

h.size #=> 2

h['name'] = 'Luke' # heterog. values

h[4.3] = [1, 3, 5] # heterog. keys

h.delete 'id' # can shrink

h == {'age' => 22,

'name' => 'Luke',

4.3 => [1, 3, 5]}

Computer Science and Engineering ◼ The Ohio State University

Example

list = %w{cake bake cookie car apple}

Group by string length:

groups = Hash.new{ |h, k| h[k] = [] }

list.each { |v|

groups[v.length] << v

}

groups == { 4 => ["cake", "bake"],

6 => ["cookie"],

3 => ["car"], 5 => ["apple"] }

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Write the Ruby code that, given an
array of strings, computes frequency
of occurrence of each word

 Example:

◼ Given

["car", "van", "car", "car"]

◼ Compute

{"car" => 3, "van" => 1}

Computer Science and Engineering ◼ The Ohio State University

Example

list = %w{car van car car}

Your code here

groups #=> {"car" => 3, "van" => 1}

Computer Science and Engineering ◼ The Ohio State University

Using Blocks with Hashes

 Do something with every key/value
pair
h.each {|k, v| print "(#{k},#{v})"}

 Do something with every key or value
h.each_key { |k| print "#{k}--" }

h.each_value { |v| print "#{v}--" }

 Combine two hashes
h1.merge(h2) { |k, v1, v2| v2 – v1 }

 Filter
a.delete_if { |k, v| v =~ /[aeiou]/ }

a.keep_if { |k, v| v =~ /[aeiou]/ }

Computer Science and Engineering ◼ The Ohio State University

Immutability of Keys

 Rule: Once a key is in a hash, never

change its value
grades[student] = 'C+'

student.wake_up! # danger

 Problem: Aliases

 “Solution”: For strings, Ruby copies (and
freezes) a string when added to a hash
a, b = String.new('fs'), String.new('sn')

h = {a => 34, b => 44}

puts a.object_id, b.object_id

h.each_key { |key| puts key.object_id }

Computer Science and Engineering ◼ The Ohio State University

Symbols

 Roughly: unique & immutable strings

 Syntax: prefix with ":"
:height

:'some symbol'

:"#{name}'s crazy idea"

 Easy (too easy?) to convert between
symbols and strings
:name.to_s #=> "name"

'name'.to_sym #=> :name

 But symbols are not strings
:name == 'name' #=> false

Computer Science and Engineering ◼ The Ohio State University

Operational View

 A symbol is created once, and all uses
refer to that same object (aliases)

 Symbols are immutable

 Example
[].object_id #=> 200

[].object_id #=> 220

[].equal? [] #=> false

:world.object_id #=> 459528

:world.object_id #=> 459528

:world.equal? :world #=> true

Computer Science and Engineering ◼ The Ohio State University

Symbols as Hash Keys

 Literal notation, but note colon location!
colors = {red: 0xf00,

green: 0x0f0,

blue: 0x00f}

 This is just syntactic sugar

◼ {name: value} same as {:name => value}

◼ The key is a symbol (eg :red)

 Pitfalls
colors.red #=> NoMethodError

colors["red"] #=> nil

colors[:red] #=> 3840 (ie 0xf00)

Computer Science and Engineering ◼ The Ohio State University

Keyword Arguments

 Alternative to positional matching of
arguments with formal parameters
def display(first:, last:)

puts "Hello #{first} #{last}"

end

display first: 'Mork', last: 'Ork'

display last: 'Hawking', first: 'Steven'

 Providing a default value makes that
argument optional
def greet(title: 'Dr.', name:)

puts "Hello #{title} #{name}"

end

 Benefits: Client code is easier to read,
and flexibility in optional arguments

Computer Science and Engineering ◼ The Ohio State University

Summary

 Blocks
◼ Code passed as argument to a function

◼ Elegant iteration over arrays

 Enumerable
◼ Many useful iteration methods

 Hashes
◼ Partial maps (aka associative arrays)

 Symbols
◼ Unique, immutable strings

◼ Often used as keys in hashes

	Slide 1: To Ponder
	Slide 3: Ruby: Useful Classes and Methods
	Slide 4: Ranges
	Slide 5: Range Inclusion
	Slide 6: Strings
	Slide 7: Examples
	Slide 9: Arrays
	Slide 10: Mutators: Growing/Shrinking
	Slide 11: Concatenation and Difference
	Slide 12: And Many More
	Slide 13: To Ponder
	Slide 15: Example
	Slide 17: Example
	Slide 18: Example: A Solution
	Slide 19: Refactor: Array Literal
	Slide 20: Refactor: Extend Array
	Slide 21: Refactor: Push
	Slide 22: Refactor: Push Operator
	Slide 23: Refactor: Statement Modifier
	Slide 24: Summary
	Slide 25: Splat "Operator" *
	Slide 26: Splat in Function Definition/Use
	Slide 29: To Ponder
	Slide 30: Ruby: Blocks, Hashes, and Symbols
	Slide 31: Blocks
	Slide 32: Calling Blocks
	Slide 33: Idioms for Blocks
	Slide 34: Simple Iteration
	Slide 35: Iterating on Arrays Using Blocks
	Slide 36: Map
	Slide 37: Map: Examples
	Slide 38: Reduce
	Slide 39: Reduction Chain
	Slide 40: Reduce: Examples
	Slide 41: Module: Enumerable
	Slide 42: Your Turn
	Slide 44: Your Turn
	Slide 46: Your Turn
	Slide 48: Example: What Does This Do?
	Slide 49: Hashes
	Slide 50: Using Hashes
	Slide 51: Example
	Slide 52: Your Turn
	Slide 53: Example
	Slide 55: Using Blocks with Hashes
	Slide 56: Immutability of Keys
	Slide 57: Symbols
	Slide 58: Operational View
	Slide 59: Symbols as Hash Keys
	Slide 61: Keyword Arguments
	Slide 62: Summary

