Ruby:

Object-Oriented Concepts

C

Lecture 4

Classes

Computer Science and Engineering B The Ohio State University

O Classes have methods and variables
class LightBulb # name with CamelCase
def initialize # special method name
@state = false # @ means "instance variable"
end
def on?
@state # implicit return
end
def flip switch! # name with snake case
@state = !(@state
end
end

O Instantiation calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322

@state=false>
f.on? #=> false

V 1SI b - | - t
Computer Science and Engineering B The Ohio State University

O Instance variables are always private
B Private to object, not class

O Methods can be private, protected, or public
(default)

class LightBulb
private def inside

end

def access internals (other bulb)
inside # ok
other bulb.inside # no! inside is private

self.inside # no explicit recv'r allowed
end

end

Getters/Setters

Computer Science and Engineering B The Ohio State University

class LightBulb
def initialize(color, state: false)
@color = color # not visible outside object
@state = state # not visible outside object
end
def color
@color
end
def state
@state
end
def state=(value)
@state = wvalue
end
end

Attributes

Computer Science and Engineering B The Ohio State University

class LightBulb

def initialize(color, state: false)
@Qcolor = color
@state = state

end

def color
@color

end

attr accessor :state # name is a symbol

end

Attributes

Computer Science and Engineering B The Ohio State University

class LightBulb
def initialize(color, state: false)
@Qcolor = color
@state = state
end

attr reader :color

attr;accessor :state

end

Attributes

Computer Science and Engineering B The Ohio State University

class LightBulb
attr reader :color
attr accessor :state
attr writer :size

def initialize(color, state: false)
@color = color
@state = state
@size = 0
end
end

Classes Are Always Open

Computer Science and Engineering B The Ohio State University

O A class can always be extended
class Street
def construction .. end
end

class Street
def repave .. end # Street now has 2 methods
end

O Applies to core classes too
class Integer
def log2 of cube # lg(self”3)
(self**3) .to s(2) .length - 1
end

end
500.1log2 of cube #=> 26

Classes are Always Open (!)

Com

Existing methods can be redefined!

When done with system code

(libraries, core ...) called "monkey

patc
fem

ning”

oting, but... Just Don't Do It

No Overloading

Computer Science and Engineering B The Ohio State University

Method identified by (symbol) name
B No distinction based on number of arguments

Approximation: default arguments
def initialize(width, height = 10)
@width = width
@height = height
end
Old alternative: trailing options hash
def initialize(width, options)

Modern style: default keyword arguments
def initialize (height: 10, width:)

A Class is an Object Instance too

B The Ohio

Even classes are objects, created by ‘new
LightBulb = Class.new do #class LightBulb

def initialize
@state = false

end

def on-?
@state

end

def flip switch!
@state = !@state

end

end

Instance, Class, Class Instance

Computer Science and Engineering B The Ohio State University

class LightBulb

@statel # class instance var
def initialize
@state2 = .. # instance variable
@@state3 = .. # class variable
end
def bar # instance method
sees (@state2, (@@state3

end

def self. foo class method

sees (@statel, (@@state3

H*H

end
end

Inheritance

Single inheritance between classes
class LightBulb < Device

end

B Default superclass is Object (which inherits
from BasicObject)

Keyword super to call parent's method
B No args means forward all args
class LightBulb < Device
def electrify (current, voltage)
do work
super # with current and voltage
end
end

Computer Science and Engineering B The Ohio State University

Modules

Computer Science and Engineering B The Ohio State University

Another container for definitions
module Stockable

MAX = 1000
class Item .. end
def self.inventory .. end # utility fn
def order .. end
end

Cannot, themselves, be instantiated

s = Stockable.new # NoMethodError
i = Stockable::Item.new # ok

Stockable.inventory # ok
Stockable.order # NoMethodError

Modules as Namespaces

Compute ng ® The Ohio State University

Modules create independent namespaces
B cf. packages in Java

Access contents via scoping (::)

Math: :PI #=> 3.141592653589793
Math::cos 0 #=> 1.0

widget = Stockable::Item.new

X = Stockable::inventory

Post < ActiveRecord: :Base
BookController < ActionController: :Base

Style: use dot to invoke utility functions
(ie module methods)

Math.cos 0O => 1.0
Stockable.inventory

Modules are Always Open

Computer Science and Engineering B The Ohio State University

O Module contains several related classes
O Style: Each class should be in its own file

O So split module definition
game.rb
module Game
end

game/card.rb
module Game

class Card .. end
end

game/player.rb
module Game

class Player .. end
end

Modules as “"Mixins”

Another container for method definitions
module Stockable
def order .. end
end

A module can be included in a class
class LightBulb < Device
include Stockable, Comparable ..
end

Module's (instance) methods become
(instance) methods of the class
bulb = LightBulb.new
bulb.order # from Stockable
if bulb <= old bulb # from Comparable

Computer Science and Engineering B The Ohio State University

Requirements for Mixins

Comp

Mixins often rely on certain aspects of
classes into which they are included
Example: Comparable methods use #<=>
module Comparable
def <(other) .. end
def <=(other) .. end
end

Enumerable methods use #each

Recall layering in SW I/11? Roughly:
B Class implements kernel methods
B Module implements secondary methods

gineering M The Ohio State University

https://ruby-doc.org/3.2.2/Comparable.html
https://ruby-doc.org/3.2.2/Enumerable.html

Software Englneerlng

H The

All the good principles of SW I/II apply
Single point of control over change
B Avoid magic numbers

Client view: abstract state, contracts,
INvariants

Implementer view: concrete rep,
correspondence, invariants

Checkstyle tool: rubocop

Documentation: YARD

B Notation for types: yardoc.org/types.html
@param words Array<String> the lexicon

http://yardoc.org/types.html

Summary

Classes as blueprints for objects

B Contain methods and variables

B Public vs private visibility of methods

B Attributes for automatic getters/setters
Metaprogramming

B Classes are objects too

B "Class instance” variables

Single inheritance

Modules are namespaces and mixins

Computer Science and Engineering B The Ohio State University

Ruby:

Objects and Dynamic Types

Computer Sci

Primitive vs Reference Types

Com

Recall Java type dichotomy:
B Primitive: int, float, double, boolean,...
B Reference: String, Set, NaturalNumber, ...

A variable is a "slot” in memory
B Primitive: the slot holds the value itself

B Reference: the slot holds a pointer to the
value (an object)

a d
width: 12
/\ 3 height: 15
color: "blue"

Object Value vs Reference Value

Co

Variable of reference type has both:
B Reference value: value of the slot itself

B Object value: value of object it points to
(corresponding to its mathematical value)

Variable of primitive type has just one

B Value of the slot itself, corresponding to
its mathematical value

a d

width: 12
/\ 3 height: 15
color: "blue"

Two Kinds of Equality

Computer Science and Engineering B The Ohio State University

Question: "“Is x equal to y?”

B A question about the mathematical value
of the variables x and y

In Java, depending on the type of x
and y we either need to:

B Compare the values of the slots

x ==vy // for primitive types

B Compare the values of the objects
x.equals(y) // for non-primitive types

Ruby: “Everything is an Object”

In Ruby, every variable maps to an object
B Integers, floats, strings, sets, arrays, ...

Benefit: A more consistent mental model
B References are everywhere

B Every variable has both a reference value and
an object value

B Comparison of mathematical values is always
comparison of object value

Ruby terminology: Reference value is
called the object id

B The 8-byte number stored in the slot

B Unique identifier for corresponding object
tau = 6.28

tau.object id #=> 56565211319773434

Everything is an Object

34

d

Comp

width: 12

A

> height: 15
color: "blue"

Everything is an Object
a d
width: 12
A >34 Y height: 15
color: "blue”
msqg
e
"shark"
A true
tau
[56565211319773434 ->| 6.28
J list

A

> <1,2,8,2>

Operational Detail: Immedlates

B The Ohio

For small integers, the mathematlcal
value is encoded in the reference value!
B |LSB of reference valueis 1

B Remaining bits encode value, 2's complement

x =0
object id #=> 1 (0b00000001)
y = 6

y.object id #=> 13 (0b00001101)
Known as an “immediate” value
B Others: true, false, nil, symbols, string literals

Benefit: Performance
B No change to model, everything is an object

Objects Have Methods

Familiar
methods
list = [6, 15, 3, -2]

list.size #=> 4

Since numbers are objects, they have
methods too!

3.to_s => "3"

3.o0dd? => true

3.1lcm 5 #=> 15

1533.digits #=> [3, 3, 5, 1]

3.4 5 #=> 8

3.class #=> Integer

3.methods #=> [:to s, :inspect, :+, ..]

operator to mvoke (mstance)

ce and Engineering B The Ohio State University

Pitfall: Equality Operator

ng ® The Ohio State University

Compu

Reference value is still useful sometimes
B "Do these variables refer to the same object?”

So we still need 2 methods:

x ==y

xX.equal? y
Ruby semantics are the opposite of Java!l
B == s object value equality
B .equal? is reference value equality
Example
al, a2 = [1, 2], [1, 2] # "same" array
al == a2 #=> true (obj values equal)
al.equal? a2 #=> false (ref vals differ)

To Ponder

Evaluate (each is true or false):

3 ==
3.equal? 3
[3] == [3]

[3] .equal? [3]

Computer Science and Engineering B

Assignment (Just Like Java)

C

Assignment copies the reference value

Result: Both variables point to the
same object (ie an “alias”)

Parameter passing works this way too

a b

nalin

<5, 1> <3, 4>

Assignment (Just Like Java)

C

Assignment copies the reference value

Result: Both variables point to the
same object (ie an “alias”)

Parameter passing works this way too

a b

o =

<5,1> <3, 4> <5, 1> <3, 4>

Assignment (Just Like Java)

C

Assignment copies the reference value

Result: Both variables point to the
same object (ie an “alias”)

Parameter passing works this way too

a b a b

™ P

<5,1> <3, 4> <5, 1> <3, 4>

Aliasing Mutable Objects

ing B The Ohio State University

When aliases exist, a statement can
change a variable’s object value
without mentioning that variable

x = [3, 4]

y = X # x and y are aliases

y[0] = 13 # changes x as well!

Question: What about numbers?
i = 34
j =1 # i and j are aliases

j =9 + 1 # does this increment i too?

Immutability

Computer Science and Engineering B The Ohio State University

O Recall in Java strings are immutable
B No method changes the value of a string
B A method like concat returns a new instance

O Benefit: Aliasing immutable objects is safe

O Immutability is used in Ruby too

B Numbers, true, false, nil, symbols

list = [3, 4]

list[0] = 13 # changes list's object value
list points to same object

n = 34

n=n+1 # changes n's reference value
n points to different object

B Pitfall: Unlike Java, strings in Ruby are mutable

B But objects (including strings) can be “frozen”

Freezing

Computer Science and Engineering B The Ohio State University

Makes a (single) object immutable

B The object value can not change
list = [1, 2, 8, 2].freeze
list.length #=> 4
list[0] = 3 # error: can't modify a
frozen object
list = [7, -1] # ok: ref value changed

list

Frozen object
(shallow)

Assignment Operator

Parallel assignment
X, vV, z =y, 10, radius

Arithmetic contraction

B 4= —= *= /= L= **k=
B Pitfall: no ++ or -- operators (use += 1)
Logical contraction

B ||= &&=

B Idiom: | |= for initializing potentially nil
variables

m Pitfall (minor):
O x | |= y not quite equivalentto x = x || y

0 Betterto think ofitasx || x =y
O Usually amounts to the same thing

Computer Science and Engineering B The Ohio State University

Declared vs Dynamic Types

Compu

In Java, types are associated with both
B Variables (declared / static type), and

B Objects (dynamic / run-time type)

Queue line = new QueuelL() ;

Recall: Programming to the interface
Compiler uses declared type for checks
line.inc(); // error no such method
line = new SetlL(); // err. wrong type

boolean isEmpty (Set s) {..}
if isEmpty(line) .. // error arg type

Statically Typed Languag

line
A J 9{ <1, 2,8, 2>
Queue Queuell
msg
kj —> "hello"
- Strin
String 9
d
width: 12
Y] A height: 15
color: "blue"
Shape
Rectangle

Computer Science and Engineering B The Ohio State University

Dynamically Typed Language

Compute

line
/N\ > <1, 2,8, 2>
Queuell
msg
A —> "hello”
String
d

width: 12
Y A height: 15
color: "blue"

Rectangle

Dynamically Typed Language

C

Equivalent definitions:

B No static types

B Dynamic types only

B Variables do not have type, objects do

Function Signatures

Statically typed
String parse(char[] s, int i) {.. return e;}
out = parse(t, x);
B Declare parameter and return types
O See s, i, and parse
B The compiler checks conformance of
O (Declared) types of arguments (t, x)
0 (Declared) type of return expression (e)
O (Declared) type of expression using parse (out)

Dynamically typed
def parse(s, i) .. e end

out = parse t, x
B You are on your own!

Computer Science and Engineering B The Ohio State University

Type Can Change at Run tlme

Computer Science and Engin ng ® The Ohio State Un sity

Statically Typed Dynamically Typed
//a is undeclared # a is undefined
String a; a = a
//a is null string # a is nil
a = "hi; a = "hi
//compile-time err # load-time error
a = "hi"; a = "hi"
a = 3; a=3
//compile-time err # a is now a number
a.push() ; a.push

//compile-time err # run-time error

Changing Dynamic Type

C

line

A > <1,2,8,2>

Queuell

msg

@ —> "hello"

String

neering M The Ohio State University

Changing Dynamic Type

C

msg, line = line, msg

line
A > <1,2,8,2>
Queuell
msg

[:;i;:} —> "hello"

String

neering M The Ohio State University

Changing Dynamic Type

C

msg, line = line, msg

line line

ng ® The Ohio State University

A > <1,2,8, 2> (<1,2,8, 2>

Queuell Queuell

msg msg

A — "hello" "hello"

String String

Arrays: Static Typing

msg

A

String

"hello"

String

String msg = "hello";

Computer Science and Engineering B The Ohio State University

Arrays: Static Typing

Computer Science and Engineering B The Ohio State University

msqg
String msg = "hello";
A] "hello"
: String
>tring String[] msgs = ["hello",
"world",
17
msgs
A AA[A[A
String[] Stfring || Strikg | String\&tring
he.llo "WOrId" "hi there"
String String String

Arrays. Dynamic Typ

puter Science and Engineering B

Com

ms
J msg = "hello";
A -/ "hello”
String
msgs = ["hello",
"world",
.17
msgs
Sr;e.llo "world" "hi there"
ring String String

Consequence: Heterogeneity

msgs = ["hello",

3.14,
... 1

A alAlAlA

"hello"
String

3.14 17
Float Integer

Tradeoffs

Statically Typed

L
L
L

Earlier error detection
Clearer APIs

More compiler
optimizations

Richer IDE support

Dynamically Typed
O Less code to write
0 Less code to change
O Quicker prototyping
O No casting needed

Strongly Typed

Computer Science and Engineering B The Ohio State University

Just because variables don’t have
types, doesn’t mean you can do
anything you want

>> 'hi' .upcase

=> "HI"

>> 'hi'.odd?

NoMethodError: undefined method odd?'
for String

>> puts 'The value of x 1s ' + x

TypeError: can't convert Integer to
String

Summary

Object-oriented

B References are everywhere

B Assignment copies reference value (alias)
B Primitives (immediates) are objects too

B == vs .equal? are flipped

Dynamically type

B Objects have types, variables do not
Strongly Typed

B Incompatible types produce (run time)
error

	Slide 1: Ruby: Object-Oriented Concepts
	Slide 2: Classes
	Slide 3: Visibility
	Slide 4: Getters/Setters
	Slide 5: Attributes
	Slide 6: Attributes
	Slide 7: Attributes
	Slide 8: Classes Are Always Open
	Slide 9: Classes are Always Open (!)
	Slide 10: No Overloading
	Slide 11: A Class is an Object Instance too
	Slide 12: Instance, Class, Class Instance
	Slide 13: Inheritance
	Slide 14: Modules
	Slide 15: Modules as Namespaces
	Slide 16: Modules are Always Open
	Slide 17: Modules as “Mixins”
	Slide 18: Requirements for Mixins
	Slide 20: Software Engineering
	Slide 21: Summary
	Slide 22: Ruby: Objects and Dynamic Types
	Slide 23: Primitive vs Reference Types
	Slide 24: Object Value vs Reference Value
	Slide 25: Two Kinds of Equality
	Slide 26: Ruby: “Everything is an Object”
	Slide 27: Everything is an Object
	Slide 28: Everything is an Object
	Slide 29: Operational Detail: Immediates
	Slide 30: Objects Have Methods
	Slide 31: Pitfall: Equality Operator
	Slide 32: To Ponder
	Slide 33: Assignment (Just Like Java)
	Slide 34: Assignment (Just Like Java)
	Slide 35: Assignment (Just Like Java)
	Slide 36: Aliasing Mutable Objects
	Slide 37: Immutability
	Slide 38: Freezing
	Slide 39: Assignment Operators
	Slide 40: Declared vs Dynamic Types
	Slide 41: Statically Typed Language
	Slide 42: Dynamically Typed Language
	Slide 43: Dynamically Typed Language
	Slide 44: Function Signatures
	Slide 45: Type Can Change at Run-time
	Slide 46: Changing Dynamic Type
	Slide 47: Changing Dynamic Type
	Slide 48: Changing Dynamic Type
	Slide 49: Arrays: Static Typing
	Slide 50: Arrays: Static Typing
	Slide 51: Arrays: Dynamic Typing
	Slide 52: Consequence: Heterogeneity
	Slide 53: Tradeoffs
	Slide 54: Strongly Typed
	Slide 55: Summary

