
Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Object-Oriented Concepts

Lecture 4

Computer Science and Engineering ◼ The Ohio State University

Classes

 Classes have methods and variables
class LightBulb # name with CamelCase

def initialize # special method name

@state = false # @ means "instance variable"

end

def on?

@state # implicit return

end

def flip_switch! # name with snake_case

@state = !@state

end

end

 Instantiation calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322

@state=false>

f.on? #=> false

Computer Science and Engineering ◼ The Ohio State University

Visibility

 Instance variables are always private
◼ Private to object, not class

 Methods can be private, protected, or public
(default)
class LightBulb

private def inside

…

end

def access_internals(other_bulb)

inside # ok

other_bulb.inside # no! inside is private

self.inside # no explicit recv'r allowed

end

end

Computer Science and Engineering ◼ The Ohio State University

Getters/Setters

class LightBulb

def initialize(color, state: false)

@color = color # not visible outside object

@state = state # not visible outside object

end

def color

@color

end

def state

@state

end

def state=(value)

@state = value

end

end

Computer Science and Engineering ◼ The Ohio State University

Attributes

class LightBulb

def initialize(color, state: false)

@color = color

@state = state

end

def color

@color

end

attr_accessor :state # name is a symbol

end

Computer Science and Engineering ◼ The Ohio State University

Attributes

class LightBulb

def initialize(color, state: false)

@color = color

@state = state

end

attr_reader :color

attr_accessor :state

end

Computer Science and Engineering ◼ The Ohio State University

Attributes

class LightBulb

attr_reader :color

attr_accessor :state

attr_writer :size

def initialize(color, state: false)

@color = color

@state = state

@size = 0

end

end

Computer Science and Engineering ◼ The Ohio State University

Classes Are Always Open

 A class can always be extended
class Street

def construction … end

end

…

class Street

def repave … end # Street now has 2 methods

end

 Applies to core classes too
class Integer

def log2_of_cube # lg(self^3)

(self**3).to_s(2).length - 1

end

end

500.log2_of_cube #=> 26

Computer Science and Engineering ◼ The Ohio State University

Classes are Always Open (!)

 Existing methods can be redefined!

 When done with system code
(libraries, core …) called “monkey
patching”

 Tempting, but… Just Don’t Do It

Computer Science and Engineering ◼ The Ohio State University

No Overloading

 Method identified by (symbol) name

◼ No distinction based on number of arguments

 Approximation: default arguments
def initialize(width, height = 10)

@width = width

@height = height

end

 Old alternative: trailing options hash
def initialize(width, options)

 Modern style: default keyword arguments
def initialize(height: 10, width:)

Computer Science and Engineering ◼ The Ohio State University

A Class is an Object Instance too

 Even classes are objects, created by :new
LightBulb = Class.new do #class LightBulb

def initialize

@state = false

end

def on?

@state

end

def flip_switch!

@state = !@state

end

end

Computer Science and Engineering ◼ The Ohio State University

Instance, Class, Class Instance

class LightBulb

@state1 # class instance var

def initialize

@state2 = … # instance variable

@@state3 = … # class variable

end

def bar # instance method

… # sees @state2, @@state3

end

def self.foo # class method

… # sees @state1, @@state3

end

end

Computer Science and Engineering ◼ The Ohio State University

Inheritance

 Single inheritance between classes
class LightBulb < Device

…

end

◼ Default superclass is Object (which inherits
from BasicObject)

 Keyword super to call parent's method
◼ No args means forward all args

class LightBulb < Device

def electrify(current, voltage)

do_work

super # with current and voltage

end

end

Computer Science and Engineering ◼ The Ohio State University

Modules

 Another container for definitions
module Stockable

MAX = 1000

class Item … end

def self.inventory … end # utility fn

def order … end

end

 Cannot, themselves, be instantiated
s = Stockable.new # NoMethodError

i = Stockable::Item.new # ok

Stockable.inventory # ok

Stockable.order # NoMethodError

Computer Science and Engineering ◼ The Ohio State University

Modules as Namespaces

 Modules create independent namespaces
◼ cf. packages in Java

 Access contents via scoping (::)
Math::PI #=> 3.141592653589793

Math::cos 0 #=> 1.0

widget = Stockable::Item.new

x = Stockable::inventory

Post < ActiveRecord::Base

BookController < ActionController::Base

 Style: use dot to invoke utility functions
(ie module methods)

Math.cos 0 #=> 1.0

Stockable.inventory

Computer Science and Engineering ◼ The Ohio State University

Modules are Always Open

 Module contains several related classes
 Style: Each class should be in its own file
 So split module definition

game.rb

module Game

end

game/card.rb

module Game

class Card … end

end

game/player.rb

module Game

class Player … end

end

Computer Science and Engineering ◼ The Ohio State University

Modules as “Mixins”

 Another container for method definitions
module Stockable

def order … end

end

 A module can be included in a class
class LightBulb < Device

include Stockable, Comparable …

end

 Module's (instance) methods become
(instance) methods of the class

bulb = LightBulb.new

bulb.order # from Stockable

if bulb <= old_bulb # from Comparable

Computer Science and Engineering ◼ The Ohio State University

Requirements for Mixins

 Mixins often rely on certain aspects of
classes into which they are included

 Example: Comparable methods use #<=>

module Comparable

def <(other) … end

def <=(other) … end

end

 Enumerable methods use #each

 Recall layering in SW I/II? Roughly:
◼ Class implements kernel methods

◼ Module implements secondary methods

https://ruby-doc.org/3.2.2/Comparable.html
https://ruby-doc.org/3.2.2/Enumerable.html

Computer Science and Engineering ◼ The Ohio State University

Software Engineering

 All the good principles of SW I/II apply

 Single point of control over change
◼ Avoid magic numbers

 Client view: abstract state, contracts,
invariants

 Implementer view: concrete rep,
correspondence, invariants

 Checkstyle tool: rubocop

 Documentation: YARD
◼ Notation for types: yardoc.org/types.html

@param words Array<String> the lexicon

http://yardoc.org/types.html

Computer Science and Engineering ◼ The Ohio State University

Summary

 Classes as blueprints for objects
◼ Contain methods and variables

◼ Public vs private visibility of methods

◼ Attributes for automatic getters/setters

 Metaprogramming
◼ Classes are objects too

◼ “Class instance” variables

 Single inheritance

 Modules are namespaces and mixins

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Objects and Dynamic Types

Computer Science and Engineering ◼ The Ohio State University

Primitive vs Reference Types

 Recall Java type dichotomy:

◼ Primitive: int, float, double, boolean,…

◼ Reference: String, Set, NaturalNumber,…

 A variable is a “slot” in memory

◼ Primitive: the slot holds the value itself

◼ Reference: the slot holds a pointer to the
value (an object)

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering ◼ The Ohio State University

Object Value vs Reference Value

 Variable of reference type has both:

◼ Reference value: value of the slot itself

◼ Object value: value of object it points to
(corresponding to its mathematical value)

 Variable of primitive type has just one

◼ Value of the slot itself, corresponding to
its mathematical value

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering ◼ The Ohio State University

Two Kinds of Equality

 Question: “Is x equal to y?”

◼ A question about the mathematical value
of the variables x and y

 In Java, depending on the type of x
and y we either need to:

◼ Compare the values of the slots

x == y // for primitive types

◼ Compare the values of the objects

x.equals(y) // for non-primitive types

Computer Science and Engineering ◼ The Ohio State University

Ruby: “Everything is an Object”

 In Ruby, every variable maps to an object
◼ Integers, floats, strings, sets, arrays, …

 Benefit: A more consistent mental model
◼ References are everywhere
◼ Every variable has both a reference value and

an object value
◼ Comparison of mathematical values is always

comparison of object value

 Ruby terminology: Reference value is
called the object id
◼ The 8-byte number stored in the slot
◼ Unique identifier for corresponding object
tau = 6.28

tau.object_id #=> 56565211319773434

Computer Science and Engineering ◼ The Ohio State University

Everything is an Object

d
width: 12
height: 15
color: "blue"

a

34

Computer Science and Engineering ◼ The Ohio State University

Everything is an Object

d
width: 12
height: 15
color: "blue"

a

34

"shark"
true

<1,2,8,2>

list

done

tau

6.2856565211319773434

msg

Computer Science and Engineering ◼ The Ohio State University

Operational Detail: Immediates

 For small integers, the mathematical
value is encoded in the reference value!
◼ LSB of reference value is 1

◼ Remaining bits encode value, 2's complement

x = 0

x.object_id #=> 1 (0b00000001)

y = 6

y.object_id #=> 13 (0b00001101)

 Known as an “immediate” value
◼ Others: true, false, nil, symbols, string literals

 Benefit: Performance
◼ No change to model, everything is an object

Computer Science and Engineering ◼ The Ohio State University

Objects Have Methods

 Familiar "." operator to invoke (instance)
methods
list = [6, 15, 3, -2]

list.size #=> 4

 Since numbers are objects, they have
methods too!
3.to_s #=> "3"

3.odd? #=> true

3.lcm 5 #=> 15

1533.digits #=> [3, 3, 5, 1]

3.+ 5 #=> 8

3.class #=> Integer

3.methods #=> [:to_s, :inspect, :+, …]

Computer Science and Engineering ◼ The Ohio State University

Pitfall: Equality Operator

 Reference value is still useful sometimes
◼ “Do these variables refer to the same object?”

 So we still need 2 methods:
x == y

x.equal? y

 Ruby semantics are the opposite of Java!
◼ == is object value equality

◼ .equal? is reference value equality

 Example
a1, a2 = [1, 2], [1, 2] # "same" array

a1 == a2 #=> true (obj values equal)

a1.equal? a2 #=> false (ref vals differ)

Computer Science and Engineering ◼ The Ohio State University

To Ponder

Evaluate (each is true or false):

3 == 3

3.equal? 3

[3] == [3]

[3].equal? [3]

Computer Science and Engineering ◼ The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the
same object (ie an “alias”)

 Parameter passing works this way too

a b

<5, 1> <3, 4>

Computer Science and Engineering ◼ The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the
same object (ie an “alias”)

 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering ◼ The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the
same object (ie an “alias”)

 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering ◼ The Ohio State University

Aliasing Mutable Objects

 When aliases exist, a statement can
change a variable’s object value
without mentioning that variable
x = [3, 4]

y = x # x and y are aliases

y[0] = 13 # changes x as well!

 Question: What about numbers?
i = 34

j = i # i and j are aliases

j = j + 1 # does this increment i too?

Computer Science and Engineering ◼ The Ohio State University

Immutability

 Recall in Java strings are immutable
◼ No method changes the value of a string

◼ A method like concat returns a new instance

 Benefit: Aliasing immutable objects is safe
 Immutability is used in Ruby too

◼ Numbers, true, false, nil, symbols
list = [3, 4]

list[0] = 13 # changes list's object value

list points to same object

n = 34

n = n + 1 # changes n's reference value

n points to different object

◼ Pitfall: Unlike Java, strings in Ruby are mutable

◼ But objects (including strings) can be “frozen”

Computer Science and Engineering ◼ The Ohio State University

Freezing

 Makes a (single) object immutable

◼ The object value can not change

list = [1, 2, 8, 2].freeze

list.length #=> 4

list[0] = 3 # error: can't modify a

frozen object

list = [7, -1] # ok: ref value changed

list

<1, 2, 8, 2>

Frozen object
(shallow)

Computer Science and Engineering ◼ The Ohio State University

Assignment Operators

 Parallel assignment
x, y, z = y, 10, radius

 Arithmetic contraction
◼ += -= *= /= %= **=

◼ Pitfall: no ++ or -- operators (use += 1)

 Logical contraction
◼ ||= &&=

◼ Idiom: ||= for initializing potentially nil
variables

◼ Pitfall (minor):
 x ||= y not quite equivalent to x = x || y

 Better to think of it as x || x = y

 Usually amounts to the same thing

Computer Science and Engineering ◼ The Ohio State University

Declared vs Dynamic Types

 In Java, types are associated with both
◼ Variables (declared / static type), and

◼ Objects (dynamic / run-time type)
Queue line = new Queue1L();

 Recall: Programming to the interface

 Compiler uses declared type for checks
line.inc(); // error no such method

line = new Set1L(); // err. wrong type

boolean isEmpty (Set s) {…}

if isEmpty(line) … // error arg type

Computer Science and Engineering ◼ The Ohio State University

Statically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue
Queue1L

String
String

Shape
Rectangle

Computer Science and Engineering ◼ The Ohio State University

Dynamically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Rectangle

Computer Science and Engineering ◼ The Ohio State University

Dynamically Typed Language

 Equivalent definitions:

◼ No static types

◼ Dynamic types only

◼ Variables do not have type, objects do

Computer Science and Engineering ◼ The Ohio State University

Function Signatures

 Statically typed
String parse(char[] s, int i) {… return e;}

out = parse(t, x);

◼ Declare parameter and return types
 See s, i, and parse

◼ The compiler checks conformance of
 (Declared) types of arguments (t, x)

 (Declared) type of return expression (e)

 (Declared) type of expression using parse (out)

 Dynamically typed
def parse(s, i) … e end

out = parse t, x

◼ You are on your own!

Computer Science and Engineering ◼ The Ohio State University

Type Can Change at Run-time

Statically Typed

//a is undeclared

String a;

//a is null string

a = "hi;

//compile-time err

a = "hi";

a = 3;

//compile-time err

a.push();

//compile-time err

Dynamically Typed

a is undefined

a = a

a is nil

a = "hi

load-time error

a = "hi"

a = 3

a is now a number

a.push

run-time error

Computer Science and Engineering ◼ The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Computer Science and Engineering ◼ The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering ◼ The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering ◼ The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

String msg = "hello";

Computer Science and Engineering ◼ The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

msgs

String[] String String String String

"hello"

String
"world"

String

"hi there"

String

String msg = "hello";

String[] msgs = ["hello",

"world",

...];

Computer Science and Engineering ◼ The Ohio State University

Arrays: Dynamic Typing

msg

"hello"

String

msgs

"hello"

String
"world"

String

"hi there"

String

msg = "hello";

msgs = ["hello",

"world",

...];

Computer Science and Engineering ◼ The Ohio State University

Consequence: Heterogeneity

msgs

"hello"

String
3.14

Float

17

Integer

msgs = ["hello",

3.14,

...];

Computer Science and Engineering ◼ The Ohio State University

Statically Typed

 Earlier error detection

 Clearer APIs

 More compiler
optimizations

 Richer IDE support

Dynamically Typed

 Less code to write

 Less code to change

 Quicker prototyping

 No casting needed

Tradeoffs

Computer Science and Engineering ◼ The Ohio State University

Strongly Typed

 Just because variables don’t have
types, doesn’t mean you can do
anything you want
>> 'hi'.upcase

=> "HI"

>> 'hi'.odd?

NoMethodError: undefined method `odd?'

for String

>> puts 'The value of x is ' + x

TypeError: can't convert Integer to

String

Computer Science and Engineering ◼ The Ohio State University

Summary

 Object-oriented
◼ References are everywhere

◼ Assignment copies reference value (alias)

◼ Primitives (immediates) are objects too

◼ == vs .equal? are flipped

 Dynamically type
◼ Objects have types, variables do not

 Strongly Typed
◼ Incompatible types produce (run time)

error

	Slide 1: Ruby: Object-Oriented Concepts
	Slide 2: Classes
	Slide 3: Visibility
	Slide 4: Getters/Setters
	Slide 5: Attributes
	Slide 6: Attributes
	Slide 7: Attributes
	Slide 8: Classes Are Always Open
	Slide 9: Classes are Always Open (!)
	Slide 10: No Overloading
	Slide 11: A Class is an Object Instance too
	Slide 12: Instance, Class, Class Instance
	Slide 13: Inheritance
	Slide 14: Modules
	Slide 15: Modules as Namespaces
	Slide 16: Modules are Always Open
	Slide 17: Modules as “Mixins”
	Slide 18: Requirements for Mixins
	Slide 20: Software Engineering
	Slide 21: Summary
	Slide 22: Ruby: Objects and Dynamic Types
	Slide 23: Primitive vs Reference Types
	Slide 24: Object Value vs Reference Value
	Slide 25: Two Kinds of Equality
	Slide 26: Ruby: “Everything is an Object”
	Slide 27: Everything is an Object
	Slide 28: Everything is an Object
	Slide 29: Operational Detail: Immediates
	Slide 30: Objects Have Methods
	Slide 31: Pitfall: Equality Operator
	Slide 32: To Ponder
	Slide 33: Assignment (Just Like Java)
	Slide 34: Assignment (Just Like Java)
	Slide 35: Assignment (Just Like Java)
	Slide 36: Aliasing Mutable Objects
	Slide 37: Immutability
	Slide 38: Freezing
	Slide 39: Assignment Operators
	Slide 40: Declared vs Dynamic Types
	Slide 41: Statically Typed Language
	Slide 42: Dynamically Typed Language
	Slide 43: Dynamically Typed Language
	Slide 44: Function Signatures
	Slide 45: Type Can Change at Run-time
	Slide 46: Changing Dynamic Type
	Slide 47: Changing Dynamic Type
	Slide 48: Changing Dynamic Type
	Slide 49: Arrays: Static Typing
	Slide 50: Arrays: Static Typing
	Slide 51: Arrays: Dynamic Typing
	Slide 52: Consequence: Heterogeneity
	Slide 53: Tradeoffs
	Slide 54: Strongly Typed
	Slide 55: Summary

