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Classes

 Classes have methods and variables
class LightBulb # name with CamelCase

def initialize # special method name

@state = false # @ means "instance variable"

end

def on?

@state           # implicit return

end

def flip_switch!   # name with snake_case

@state = !@state

end

end

 Instantiation calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322

@state=false>

f.on? #=> false
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Visibility

 Instance variables are always private
◼ Private to object, not class

 Methods can be private, protected, or public 
(default)
class LightBulb

private def inside

…

end

def access_internals(other_bulb)

inside # ok

other_bulb.inside # no! inside is private

self.inside # no explicit recv'r allowed

end

end
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Getters/Setters

class LightBulb

def initialize(color, state: false)

@color = color # not visible outside object

@state = state # not visible outside object

end

def color

@color

end

def state

@state

end

def state=(value)

@state = value

end

end
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Attributes

class LightBulb

def initialize(color, state: false)

@color = color

@state = state

end

def color

@color

end

attr_accessor :state # name is a symbol

end
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Attributes

class LightBulb

def initialize(color, state: false)

@color = color

@state = state

end

attr_reader :color

attr_accessor :state

end
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Attributes

class LightBulb

attr_reader :color

attr_accessor :state

attr_writer :size

def initialize(color, state: false)

@color = color

@state = state

@size = 0

end

end
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Classes Are Always Open

 A class can always be extended
class Street

def construction … end

end

…

class Street

def repave … end # Street now has 2 methods

end

 Applies to core classes too
class Integer

def log2_of_cube # lg(self^3)

(self**3).to_s(2).length - 1

end

end

500.log2_of_cube #=> 26 
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Classes are Always Open (!)

 Existing methods can be redefined!

 When done with system code 
(libraries, core …) called “monkey 
patching”

 Tempting, but… Just Don’t Do It
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No Overloading

 Method identified by (symbol) name

◼ No distinction based on number of arguments

 Approximation: default arguments
def initialize(width, height = 10)

@width = width

@height = height

end

 Old alternative: trailing options hash
def initialize(width, options)

 Modern style: default keyword arguments
def initialize(height: 10, width:)
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A Class is an Object Instance too

 Even classes are objects, created by :new
LightBulb = Class.new do #class LightBulb

def initialize

@state = false

end

def on?

@state

end

def flip_switch!

@state = !@state

end

end
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Instance, Class, Class Instance

class LightBulb

@state1        # class instance var

def initialize

@state2 = …  # instance variable

@@state3 = … # class variable

end

def bar        # instance method

…            # sees @state2, @@state3

end

def self.foo # class method

…            # sees @state1, @@state3

end

end
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Inheritance

 Single inheritance between classes
class LightBulb < Device

…

end

◼ Default superclass is Object (which inherits 
from BasicObject)

 Keyword super to call parent's method
◼ No args means forward all args

class LightBulb < Device

def electrify(current, voltage)

do_work

super # with current and voltage

end

end
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Modules

 Another container for definitions
module Stockable

MAX = 1000

class Item … end

def self.inventory … end # utility fn

def order … end

end

 Cannot, themselves, be instantiated
s = Stockable.new # NoMethodError

i = Stockable::Item.new # ok

Stockable.inventory # ok

Stockable.order # NoMethodError
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Modules as Namespaces

 Modules create independent namespaces
◼ cf. packages in Java

 Access contents via scoping (::)
Math::PI    #=> 3.141592653589793

Math::cos 0 #=> 1.0

widget = Stockable::Item.new

x = Stockable::inventory

Post < ActiveRecord::Base

BookController < ActionController::Base

 Style: use dot to invoke utility functions 
(ie module methods)

Math.cos 0  #=> 1.0

Stockable.inventory
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Modules are Always Open

 Module contains several related classes
 Style: Each class should be in its own file
 So split module definition

# game.rb

module Game

end

# game/card.rb

module Game

class Card … end

end

# game/player.rb

module Game

class Player … end

end
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Modules as “Mixins”

 Another container for method definitions
module Stockable

def order … end

end

 A module can be included in a class
class LightBulb < Device

include Stockable, Comparable …

end

 Module's (instance) methods become 
(instance) methods of the class

bulb = LightBulb.new

bulb.order # from Stockable

if bulb <= old_bulb # from Comparable



Computer Science and Engineering  ◼ The Ohio State University

Requirements for Mixins

 Mixins often rely on certain aspects of 
classes into which they are included

 Example: Comparable methods use #<=>

module Comparable

def <(other) … end

def <=(other) … end

end

 Enumerable methods use #each

 Recall layering in SW I/II?  Roughly:
◼ Class implements kernel methods

◼ Module implements secondary methods

https://ruby-doc.org/3.2.2/Comparable.html
https://ruby-doc.org/3.2.2/Enumerable.html


Computer Science and Engineering  ◼ The Ohio State University

Software Engineering

 All the good principles of SW I/II apply

 Single point of control over change
◼ Avoid magic numbers

 Client view: abstract state, contracts, 
invariants

 Implementer view: concrete rep, 
correspondence, invariants

 Checkstyle tool: rubocop

 Documentation: YARD
◼ Notation for types: yardoc.org/types.html

@param words Array<String> the lexicon

http://yardoc.org/types.html
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Summary

 Classes as blueprints for objects
◼ Contain methods and variables

◼ Public vs private visibility of methods

◼ Attributes for automatic getters/setters

 Metaprogramming
◼ Classes are objects too

◼ “Class instance” variables

 Single inheritance

 Modules are namespaces and mixins
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Ruby:
Objects and Dynamic Types
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Primitive vs Reference Types

 Recall Java type dichotomy:

◼ Primitive: int, float, double, boolean,…

◼ Reference: String, Set, NaturalNumber,…

 A variable is a “slot” in memory

◼ Primitive: the slot holds the value itself

◼ Reference: the slot holds a pointer to the 
value (an object)

d
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height: 15
color: "blue"
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Object Value vs Reference Value

 Variable of reference type has both:

◼ Reference value: value of the slot itself

◼ Object value: value of object it points to 
(corresponding to its mathematical value)

 Variable of primitive type has just one

◼ Value of the slot itself, corresponding to 
its mathematical value
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Two Kinds of Equality

 Question: “Is x equal to y?”

◼ A question about the mathematical value 
of the variables x and y

 In Java, depending on the type of x 
and y we either need to:

◼ Compare the values of the slots

x == y // for primitive types

◼ Compare the values of the objects

x.equals(y) // for non-primitive types
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Ruby: “Everything is an Object”

 In Ruby, every variable maps to an object
◼ Integers, floats, strings, sets, arrays, …

 Benefit: A more consistent mental model
◼ References are everywhere
◼ Every variable has both a reference value and 

an object value
◼ Comparison of mathematical values is always

comparison of object value

 Ruby terminology: Reference value is 
called the object id
◼ The 8-byte number stored in the slot
◼ Unique identifier for corresponding object
tau = 6.28

tau.object_id #=> 56565211319773434
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Everything is an Object
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Everything is an Object

d
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Operational Detail: Immediates

 For small integers, the mathematical 
value is encoded in the reference value!
◼ LSB of reference value is 1

◼ Remaining bits encode value, 2's complement

x = 0

x.object_id #=> 1 (0b00000001)

y = 6

y.object_id #=> 13 (0b00001101)

 Known as an “immediate” value
◼ Others: true, false, nil, symbols, string literals

 Benefit: Performance
◼ No change to model, everything is an object
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Objects Have Methods

 Familiar "." operator to invoke (instance) 
methods
list = [6, 15, 3, -2]

list.size #=> 4

 Since numbers are objects, they have 
methods too!
3.to_s #=> "3"

3.odd? #=> true

3.lcm 5 #=> 15

1533.digits #=> [3, 3, 5, 1]

3.+ 5 #=> 8

3.class #=> Integer

3.methods #=> [:to_s, :inspect, :+, …]
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Pitfall: Equality Operator

 Reference value is still useful sometimes
◼ “Do these variables refer to the same object?” 

 So we still need 2 methods:
x == y

x.equal? y

 Ruby semantics are the opposite of Java!
◼ == is object value equality

◼ .equal? is reference value equality

 Example
a1, a2 = [1, 2], [1, 2] # "same" array

a1 == a2 #=> true (obj values equal)

a1.equal? a2 #=> false (ref vals differ)
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To Ponder

Evaluate (each is true or false):

3 == 3

3.equal? 3

[3] == [3]

[3].equal? [3]
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Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the 
same object (ie an “alias”)

 Parameter passing works this way too

a b

<5, 1> <3, 4>
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Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the 
same object (ie an “alias”)

 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>
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Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the 
same object (ie an “alias”)

 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>
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Aliasing Mutable Objects

 When aliases exist, a statement can 
change a variable’s object value 
without mentioning that variable
x = [3, 4]

y = x     # x and y are aliases

y[0] = 13 # changes x as well!

 Question: What about numbers?
i = 34

j = i # i and j are aliases

j = j + 1 # does this increment i too?
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Immutability

 Recall in Java strings are immutable
◼ No method changes the value of a string

◼ A method like concat returns a new instance

 Benefit: Aliasing immutable objects is safe
 Immutability is used in Ruby too

◼ Numbers, true, false, nil, symbols
list = [3, 4]

list[0] = 13 # changes list's object value

# list points to same object

n = 34

n = n + 1    # changes n's reference value

# n points to different object

◼ Pitfall: Unlike Java, strings in Ruby are mutable

◼ But objects (including strings) can be “frozen”
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Freezing

 Makes a (single) object immutable

◼ The object value can not change

list = [1, 2, 8, 2].freeze

list.length #=> 4

list[0] = 3 # error: can't modify a

#        frozen object 

list = [7, -1] # ok: ref value changed

list

<1, 2, 8, 2>

Frozen object
(shallow)
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Assignment Operators

 Parallel assignment
x, y, z = y, 10, radius

 Arithmetic contraction
◼ += -= *= /= %= **=

◼ Pitfall: no ++ or -- operators (use += 1)

 Logical contraction
◼ ||= &&=

◼ Idiom: ||= for initializing potentially nil 
variables

◼ Pitfall (minor):
 x ||= y not quite equivalent to x = x || y

 Better to think of it as x || x = y

 Usually amounts to the same thing
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Declared vs Dynamic Types

 In Java, types are associated with both
◼ Variables (declared / static type), and

◼ Objects (dynamic / run-time type)
Queue line = new Queue1L();

 Recall: Programming to the interface

 Compiler uses declared type for checks
line.inc(); // error no such method

line = new Set1L(); // err. wrong type

boolean isEmpty (Set s) {…}

if isEmpty(line) … // error arg type
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Statically Typed Language
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Dynamically Typed Language
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Dynamically Typed Language

 Equivalent definitions:

◼ No static types

◼ Dynamic types only

◼ Variables do not have type, objects do
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Function Signatures

 Statically typed
String parse(char[] s, int i) {… return e;}

out = parse(t, x);

◼ Declare parameter and return types
 See s, i, and parse

◼ The compiler checks conformance of
 (Declared) types of arguments (t, x)

 (Declared) type of return expression (e)

 (Declared) type of expression using parse (out)

 Dynamically typed
def parse(s, i) … e end

out = parse t, x

◼ You are on your own!
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Type Can Change at Run-time

Statically Typed

//a is undeclared

String a;

//a is null string

a = "hi;

//compile-time err

a = "hi";

a = 3;

//compile-time err

a.push();

//compile-time err

Dynamically Typed

# a is undefined

a = a

# a is nil

a = "hi

# load-time error

a = "hi"

a = 3

# a is now a number

a.push

# run-time error
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Changing Dynamic Type 
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Changing Dynamic Type 
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msg, line = line, msg
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Changing Dynamic Type 

msg
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Arrays: Static Typing

msg

"hello"

String String

String msg = "hello";
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Arrays: Static Typing

msg

"hello"

String String

msgs

String[] String String String String

"hello"

String
"world"

String

"hi there"

String

String msg = "hello";

String[] msgs = ["hello",

"world",

...];
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Arrays: Dynamic Typing

msg

"hello"

String

msgs

"hello"

String
"world"

String

"hi there"

String

msg = "hello";

msgs = ["hello",

"world",

...];
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Consequence: Heterogeneity

msgs

"hello"

String
3.14

Float

17

Integer

msgs = ["hello",

3.14,

...];
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Statically Typed

 Earlier error detection

 Clearer APIs

 More compiler 
optimizations

 Richer IDE support

Dynamically Typed

 Less code to write

 Less code to change

 Quicker prototyping

 No casting needed

Tradeoffs
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Strongly Typed

 Just because variables don’t have 
types, doesn’t mean you can do 
anything you want
>> 'hi'.upcase

=> "HI"

>> 'hi'.odd?

NoMethodError: undefined method `odd?' 

for String

>> puts 'The value of x is ' + x

TypeError: can't convert Integer to 

String
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Summary

 Object-oriented
◼ References are everywhere

◼ Assignment copies reference value (alias)

◼ Primitives (immediates) are objects too

◼ == vs .equal? are flipped 

 Dynamically type
◼ Objects have types, variables do not

 Strongly Typed
◼ Incompatible types produce (run time) 

error
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