
Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Object-Oriented Concepts

Lecture 4

Computer Science and Engineering ◼ The Ohio State University

Classes

 Classes have methods and variables
class LightBulb # name with CamelCase

def initialize # special method name

@state = false # @ means "instance variable"

end

def on?

@state # implicit return

end

def flip_switch! # name with snake_case

@state = !@state

end

end

 Instantiation calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322

@state=false>

f.on? #=> false

Computer Science and Engineering ◼ The Ohio State University

Visibility

 Instance variables are always private
◼ Private to object, not class

 Methods can be private, protected, or public
(default)
class LightBulb

private def inside

…

end

def access_internals(other_bulb)

inside # ok

other_bulb.inside # no! inside is private

self.inside # no explicit recv'r allowed

end

end

Computer Science and Engineering ◼ The Ohio State University

Getters/Setters

class LightBulb

def initialize(color, state: false)

@color = color # not visible outside object

@state = state # not visible outside object

end

def color

@color

end

def state

@state

end

def state=(value)

@state = value

end

end

Computer Science and Engineering ◼ The Ohio State University

Attributes

class LightBulb

def initialize(color, state: false)

@color = color

@state = state

end

def color

@color

end

attr_accessor :state # name is a symbol

end

Computer Science and Engineering ◼ The Ohio State University

Attributes

class LightBulb

def initialize(color, state: false)

@color = color

@state = state

end

attr_reader :color

attr_accessor :state

end

Computer Science and Engineering ◼ The Ohio State University

Attributes

class LightBulb

attr_reader :color

attr_accessor :state

attr_writer :size

def initialize(color, state: false)

@color = color

@state = state

@size = 0

end

end

Computer Science and Engineering ◼ The Ohio State University

Classes Are Always Open

 A class can always be extended
class Street

def construction … end

end

…

class Street

def repave … end # Street now has 2 methods

end

 Applies to core classes too
class Integer

def log2_of_cube # lg(self^3)

(self**3).to_s(2).length - 1

end

end

500.log2_of_cube #=> 26

Computer Science and Engineering ◼ The Ohio State University

Classes are Always Open (!)

 Existing methods can be redefined!

 When done with system code
(libraries, core …) called “monkey
patching”

 Tempting, but… Just Don’t Do It

Computer Science and Engineering ◼ The Ohio State University

No Overloading

 Method identified by (symbol) name

◼ No distinction based on number of arguments

 Approximation: default arguments
def initialize(width, height = 10)

@width = width

@height = height

end

 Old alternative: trailing options hash
def initialize(width, options)

 Modern style: default keyword arguments
def initialize(height: 10, width:)

Computer Science and Engineering ◼ The Ohio State University

A Class is an Object Instance too

 Even classes are objects, created by :new
LightBulb = Class.new do #class LightBulb

def initialize

@state = false

end

def on?

@state

end

def flip_switch!

@state = !@state

end

end

Computer Science and Engineering ◼ The Ohio State University

Instance, Class, Class Instance

class LightBulb

@state1 # class instance var

def initialize

@state2 = … # instance variable

@@state3 = … # class variable

end

def bar # instance method

… # sees @state2, @@state3

end

def self.foo # class method

… # sees @state1, @@state3

end

end

Computer Science and Engineering ◼ The Ohio State University

Inheritance

 Single inheritance between classes
class LightBulb < Device

…

end

◼ Default superclass is Object (which inherits
from BasicObject)

 Keyword super to call parent's method
◼ No args means forward all args

class LightBulb < Device

def electrify(current, voltage)

do_work

super # with current and voltage

end

end

Computer Science and Engineering ◼ The Ohio State University

Modules

 Another container for definitions
module Stockable

MAX = 1000

class Item … end

def self.inventory … end # utility fn

def order … end

end

 Cannot, themselves, be instantiated
s = Stockable.new # NoMethodError

i = Stockable::Item.new # ok

Stockable.inventory # ok

Stockable.order # NoMethodError

Computer Science and Engineering ◼ The Ohio State University

Modules as Namespaces

 Modules create independent namespaces
◼ cf. packages in Java

 Access contents via scoping (::)
Math::PI #=> 3.141592653589793

Math::cos 0 #=> 1.0

widget = Stockable::Item.new

x = Stockable::inventory

Post < ActiveRecord::Base

BookController < ActionController::Base

 Style: use dot to invoke utility functions
(ie module methods)

Math.cos 0 #=> 1.0

Stockable.inventory

Computer Science and Engineering ◼ The Ohio State University

Modules are Always Open

 Module contains several related classes
 Style: Each class should be in its own file
 So split module definition

game.rb

module Game

end

game/card.rb

module Game

class Card … end

end

game/player.rb

module Game

class Player … end

end

Computer Science and Engineering ◼ The Ohio State University

Modules as “Mixins”

 Another container for method definitions
module Stockable

def order … end

end

 A module can be included in a class
class LightBulb < Device

include Stockable, Comparable …

end

 Module's (instance) methods become
(instance) methods of the class

bulb = LightBulb.new

bulb.order # from Stockable

if bulb <= old_bulb # from Comparable

Computer Science and Engineering ◼ The Ohio State University

Requirements for Mixins

 Mixins often rely on certain aspects of
classes into which they are included

 Example: Comparable methods use #<=>

module Comparable

def <(other) … end

def <=(other) … end

end

 Enumerable methods use #each

 Recall layering in SW I/II? Roughly:
◼ Class implements kernel methods

◼ Module implements secondary methods

https://ruby-doc.org/3.2.2/Comparable.html
https://ruby-doc.org/3.2.2/Enumerable.html

Computer Science and Engineering ◼ The Ohio State University

Software Engineering

 All the good principles of SW I/II apply

 Single point of control over change
◼ Avoid magic numbers

 Client view: abstract state, contracts,
invariants

 Implementer view: concrete rep,
correspondence, invariants

 Checkstyle tool: rubocop

 Documentation: YARD
◼ Notation for types: yardoc.org/types.html

@param words Array<String> the lexicon

http://yardoc.org/types.html

Computer Science and Engineering ◼ The Ohio State University

Summary

 Classes as blueprints for objects
◼ Contain methods and variables

◼ Public vs private visibility of methods

◼ Attributes for automatic getters/setters

 Metaprogramming
◼ Classes are objects too

◼ “Class instance” variables

 Single inheritance

 Modules are namespaces and mixins

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Ruby:
Objects and Dynamic Types

Computer Science and Engineering ◼ The Ohio State University

Primitive vs Reference Types

 Recall Java type dichotomy:

◼ Primitive: int, float, double, boolean,…

◼ Reference: String, Set, NaturalNumber,…

 A variable is a “slot” in memory

◼ Primitive: the slot holds the value itself

◼ Reference: the slot holds a pointer to the
value (an object)

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering ◼ The Ohio State University

Object Value vs Reference Value

 Variable of reference type has both:

◼ Reference value: value of the slot itself

◼ Object value: value of object it points to
(corresponding to its mathematical value)

 Variable of primitive type has just one

◼ Value of the slot itself, corresponding to
its mathematical value

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering ◼ The Ohio State University

Two Kinds of Equality

 Question: “Is x equal to y?”

◼ A question about the mathematical value
of the variables x and y

 In Java, depending on the type of x
and y we either need to:

◼ Compare the values of the slots

x == y // for primitive types

◼ Compare the values of the objects

x.equals(y) // for non-primitive types

Computer Science and Engineering ◼ The Ohio State University

Ruby: “Everything is an Object”

 In Ruby, every variable maps to an object
◼ Integers, floats, strings, sets, arrays, …

 Benefit: A more consistent mental model
◼ References are everywhere
◼ Every variable has both a reference value and

an object value
◼ Comparison of mathematical values is always

comparison of object value

 Ruby terminology: Reference value is
called the object id
◼ The 8-byte number stored in the slot
◼ Unique identifier for corresponding object
tau = 6.28

tau.object_id #=> 56565211319773434

Computer Science and Engineering ◼ The Ohio State University

Everything is an Object

d
width: 12
height: 15
color: "blue"

a

34

Computer Science and Engineering ◼ The Ohio State University

Everything is an Object

d
width: 12
height: 15
color: "blue"

a

34

"shark"
true

<1,2,8,2>

list

done

tau

6.2856565211319773434

msg

Computer Science and Engineering ◼ The Ohio State University

Operational Detail: Immediates

 For small integers, the mathematical
value is encoded in the reference value!
◼ LSB of reference value is 1

◼ Remaining bits encode value, 2's complement

x = 0

x.object_id #=> 1 (0b00000001)

y = 6

y.object_id #=> 13 (0b00001101)

 Known as an “immediate” value
◼ Others: true, false, nil, symbols, string literals

 Benefit: Performance
◼ No change to model, everything is an object

Computer Science and Engineering ◼ The Ohio State University

Objects Have Methods

 Familiar "." operator to invoke (instance)
methods
list = [6, 15, 3, -2]

list.size #=> 4

 Since numbers are objects, they have
methods too!
3.to_s #=> "3"

3.odd? #=> true

3.lcm 5 #=> 15

1533.digits #=> [3, 3, 5, 1]

3.+ 5 #=> 8

3.class #=> Integer

3.methods #=> [:to_s, :inspect, :+, …]

Computer Science and Engineering ◼ The Ohio State University

Pitfall: Equality Operator

 Reference value is still useful sometimes
◼ “Do these variables refer to the same object?”

 So we still need 2 methods:
x == y

x.equal? y

 Ruby semantics are the opposite of Java!
◼ == is object value equality

◼ .equal? is reference value equality

 Example
a1, a2 = [1, 2], [1, 2] # "same" array

a1 == a2 #=> true (obj values equal)

a1.equal? a2 #=> false (ref vals differ)

Computer Science and Engineering ◼ The Ohio State University

To Ponder

Evaluate (each is true or false):

3 == 3

3.equal? 3

[3] == [3]

[3].equal? [3]

Computer Science and Engineering ◼ The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the
same object (ie an “alias”)

 Parameter passing works this way too

a b

<5, 1> <3, 4>

Computer Science and Engineering ◼ The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the
same object (ie an “alias”)

 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering ◼ The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value

 Result: Both variables point to the
same object (ie an “alias”)

 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering ◼ The Ohio State University

Aliasing Mutable Objects

 When aliases exist, a statement can
change a variable’s object value
without mentioning that variable
x = [3, 4]

y = x # x and y are aliases

y[0] = 13 # changes x as well!

 Question: What about numbers?
i = 34

j = i # i and j are aliases

j = j + 1 # does this increment i too?

Computer Science and Engineering ◼ The Ohio State University

Immutability

 Recall in Java strings are immutable
◼ No method changes the value of a string

◼ A method like concat returns a new instance

 Benefit: Aliasing immutable objects is safe
 Immutability is used in Ruby too

◼ Numbers, true, false, nil, symbols
list = [3, 4]

list[0] = 13 # changes list's object value

list points to same object

n = 34

n = n + 1 # changes n's reference value

n points to different object

◼ Pitfall: Unlike Java, strings in Ruby are mutable

◼ But objects (including strings) can be “frozen”

Computer Science and Engineering ◼ The Ohio State University

Freezing

 Makes a (single) object immutable

◼ The object value can not change

list = [1, 2, 8, 2].freeze

list.length #=> 4

list[0] = 3 # error: can't modify a

frozen object

list = [7, -1] # ok: ref value changed

list

<1, 2, 8, 2>

Frozen object
(shallow)

Computer Science and Engineering ◼ The Ohio State University

Assignment Operators

 Parallel assignment
x, y, z = y, 10, radius

 Arithmetic contraction
◼ += -= *= /= %= **=

◼ Pitfall: no ++ or -- operators (use += 1)

 Logical contraction
◼ ||= &&=

◼ Idiom: ||= for initializing potentially nil
variables

◼ Pitfall (minor):
 x ||= y not quite equivalent to x = x || y

 Better to think of it as x || x = y

 Usually amounts to the same thing

Computer Science and Engineering ◼ The Ohio State University

Declared vs Dynamic Types

 In Java, types are associated with both
◼ Variables (declared / static type), and

◼ Objects (dynamic / run-time type)
Queue line = new Queue1L();

 Recall: Programming to the interface

 Compiler uses declared type for checks
line.inc(); // error no such method

line = new Set1L(); // err. wrong type

boolean isEmpty (Set s) {…}

if isEmpty(line) … // error arg type

Computer Science and Engineering ◼ The Ohio State University

Statically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue
Queue1L

String
String

Shape
Rectangle

Computer Science and Engineering ◼ The Ohio State University

Dynamically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Rectangle

Computer Science and Engineering ◼ The Ohio State University

Dynamically Typed Language

 Equivalent definitions:

◼ No static types

◼ Dynamic types only

◼ Variables do not have type, objects do

Computer Science and Engineering ◼ The Ohio State University

Function Signatures

 Statically typed
String parse(char[] s, int i) {… return e;}

out = parse(t, x);

◼ Declare parameter and return types
 See s, i, and parse

◼ The compiler checks conformance of
 (Declared) types of arguments (t, x)

 (Declared) type of return expression (e)

 (Declared) type of expression using parse (out)

 Dynamically typed
def parse(s, i) … e end

out = parse t, x

◼ You are on your own!

Computer Science and Engineering ◼ The Ohio State University

Type Can Change at Run-time

Statically Typed

//a is undeclared

String a;

//a is null string

a = "hi;

//compile-time err

a = "hi";

a = 3;

//compile-time err

a.push();

//compile-time err

Dynamically Typed

a is undefined

a = a

a is nil

a = "hi

load-time error

a = "hi"

a = 3

a is now a number

a.push

run-time error

Computer Science and Engineering ◼ The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Computer Science and Engineering ◼ The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering ◼ The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering ◼ The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

String msg = "hello";

Computer Science and Engineering ◼ The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

msgs

String[] String String String String

"hello"

String
"world"

String

"hi there"

String

String msg = "hello";

String[] msgs = ["hello",

"world",

...];

Computer Science and Engineering ◼ The Ohio State University

Arrays: Dynamic Typing

msg

"hello"

String

msgs

"hello"

String
"world"

String

"hi there"

String

msg = "hello";

msgs = ["hello",

"world",

...];

Computer Science and Engineering ◼ The Ohio State University

Consequence: Heterogeneity

msgs

"hello"

String
3.14

Float

17

Integer

msgs = ["hello",

3.14,

...];

Computer Science and Engineering ◼ The Ohio State University

Statically Typed

 Earlier error detection

 Clearer APIs

 More compiler
optimizations

 Richer IDE support

Dynamically Typed

 Less code to write

 Less code to change

 Quicker prototyping

 No casting needed

Tradeoffs

Computer Science and Engineering ◼ The Ohio State University

Strongly Typed

 Just because variables don’t have
types, doesn’t mean you can do
anything you want
>> 'hi'.upcase

=> "HI"

>> 'hi'.odd?

NoMethodError: undefined method `odd?'

for String

>> puts 'The value of x is ' + x

TypeError: can't convert Integer to

String

Computer Science and Engineering ◼ The Ohio State University

Summary

 Object-oriented
◼ References are everywhere

◼ Assignment copies reference value (alias)

◼ Primitives (immediates) are objects too

◼ == vs .equal? are flipped

 Dynamically type
◼ Objects have types, variables do not

 Strongly Typed
◼ Incompatible types produce (run time)

error

	Slide 1: Ruby: Object-Oriented Concepts
	Slide 2: Classes
	Slide 3: Visibility
	Slide 4: Getters/Setters
	Slide 5: Attributes
	Slide 6: Attributes
	Slide 7: Attributes
	Slide 8: Classes Are Always Open
	Slide 9: Classes are Always Open (!)
	Slide 10: No Overloading
	Slide 11: A Class is an Object Instance too
	Slide 12: Instance, Class, Class Instance
	Slide 13: Inheritance
	Slide 14: Modules
	Slide 15: Modules as Namespaces
	Slide 16: Modules are Always Open
	Slide 17: Modules as “Mixins”
	Slide 18: Requirements for Mixins
	Slide 20: Software Engineering
	Slide 21: Summary
	Slide 22: Ruby: Objects and Dynamic Types
	Slide 23: Primitive vs Reference Types
	Slide 24: Object Value vs Reference Value
	Slide 25: Two Kinds of Equality
	Slide 26: Ruby: “Everything is an Object”
	Slide 27: Everything is an Object
	Slide 28: Everything is an Object
	Slide 29: Operational Detail: Immediates
	Slide 30: Objects Have Methods
	Slide 31: Pitfall: Equality Operator
	Slide 32: To Ponder
	Slide 33: Assignment (Just Like Java)
	Slide 34: Assignment (Just Like Java)
	Slide 35: Assignment (Just Like Java)
	Slide 36: Aliasing Mutable Objects
	Slide 37: Immutability
	Slide 38: Freezing
	Slide 39: Assignment Operators
	Slide 40: Declared vs Dynamic Types
	Slide 41: Statically Typed Language
	Slide 42: Dynamically Typed Language
	Slide 43: Dynamically Typed Language
	Slide 44: Function Signatures
	Slide 45: Type Can Change at Run-time
	Slide 46: Changing Dynamic Type
	Slide 47: Changing Dynamic Type
	Slide 48: Changing Dynamic Type
	Slide 49: Arrays: Static Typing
	Slide 50: Arrays: Static Typing
	Slide 51: Arrays: Dynamic Typing
	Slide 52: Consequence: Heterogeneity
	Slide 53: Tradeoffs
	Slide 54: Strongly Typed
	Slide 55: Summary

