
Computer Science and Engineering  ◼ The Ohio State University

To Do TODAY

1. Push something to first-commits on 
GitHub

2. Find your group!  Submit on Discord:

1. Group name



Computer Science and Engineering  ◼ The Ohio State University

To Ponder

Evaluate

1/3   /  1/2

-1/3   /  1/2

1/3r  /  1/2r

(1/3r) / (1/2r)

0.1 + 0.2 – 0.3



Computer Science and Engineering  ◼ College of  Engineering  ◼ The Ohio State University

Ruby:
Introduction, Basics

Lecture 3



Computer Science and Engineering  ◼ The Ohio State University

Sample Code Snippet

class UsersController < ApplicationController

before_action :logged_in_user, only: %i[edit, update]

def update

if @user.update(user_params)

redirect_to user_url(@user), notice: "Success."

else

render :edit, status: :unprocessable_entity

end

end

def user_params

params.require(:user).permit(:name, :email,

:password)

end

end



Computer Science and Engineering  ◼ The Ohio State University

Ruby vs Java: Similarities

 Imperative and object-oriented

◼ Classes and instances (ie objects)

◼ Inheritance

 Strongly typed

◼ Classes determine valid operations

 Some familiar operators

◼ Arithmetic, bitwise, comparison, logical

 Some familiar keywords
◼ if, then, else, while, for, class, new…



Computer Science and Engineering  ◼ The Ohio State University

But Ruby Looks Different

 Punctuation

◼ Omits ;’s and often ()’s on function calls

◼ Function names can end in ? or !

 New keywords and operators
◼ def, do..end, yield, unless

◼ ** (exp), =~ (match), <=> (spaceship)

 Rich core libraries

◼ Collections: Hashes, Arrays

◼ Strings and regular expressions

◼ Enumerators for iteration



Computer Science and Engineering  ◼ The Ohio State University

Deeper Differences As Well

 Interpreted (typically)

◼ Run a program directly, without compiling

 Dynamically typed

◼ Objects have types, variables don't

 Everything is an object

◼ C.f. primitives in Java

 Code can be passed into a function as 
a parameter

◼ Java has added this too (“lambdas”)



Computer Science and Engineering  ◼ The Ohio State University

Compiling Programs

 Program = Text file
◼ Contains easy-to-understand statements 

like “print”, “if”, “while”, etc.

 But a computer can only execute 
machine instructions
◼ Instruction set architecture of the CPU

 A compiler translates the program 
(source code) into an executable 
(machine code)
◼ Recall “Bugs World” from CSE 2231

 Examples: C, C++, Objective-C, Ada…



Computer Science and Engineering  ◼ The Ohio State University

Interpreting Programs

 An interpreter reads a program and 
executes it directly

 Advantages

◼ Platform independence

◼ Read-eval-print loop (aka REPL)

◼ Reflection

 Disadvantages

◼ Speed

◼ Later error detection (i.e., at run time)

 Examples: JavaScript, Python, Ruby



Computer Science and Engineering  ◼ The Ohio State University

Combination of Both

 A language is not inherently compiled 
or interpreted

◼ A property of its implementation

 Sometimes a combination is used:

◼ Compile source code into an intermediate 
representation (byte code)

◼ Interpret the byte code

 Examples of combination: Java, C#



Computer Science and Engineering  ◼ The Ohio State University

Ruby is (Usually) Interpretted

 REPL with Ruby interpreter, irb
$ irb

>> 3 + 4

=> 7

>> puts "hello world"

hello world

=> nil

>> def square(x) x**2 end

=> :square

>> square -4

=> 16



Computer Science and Engineering  ◼ The Ohio State University

Literals

 Numbers (Integer, Float, Rational, Complex)
83, 0123, 0x53, 0b1010011, 0b101_0011

123.45, 1.2345e2, 12345E-2

2/3r, 4+3i

 Strings
◼ Delimeters " " and ' '

◼ Interpolation of #{…} occurs (only) inside " "

"Sum 6+3 is #{6+3}" is "Sum 6+3 is 9"

◼ Custom delimeters with %Q�…� and %q�…�

 Ranges
◼ 0..4 is end inclusive (0, 1, 2, 3, 4)

◼ 0...4 is end exclusive (0, 1, 2, 3)

 Arrays and hashes (later)



Computer Science and Engineering  ◼ The Ohio State University

Comments and Statements

 Single-line comments start with #

◼ Don't confuse it with string interpolation!

 Multi-line comments bracketed by
=begin

=end

◼ Must appear at beginning of line

 Every statement has a value result

 Convention: => to indicate result

"Hi #{name}" + "!" #=> "Hi Liam!“

puts "Bye #{name}" #=> nil



Computer Science and Engineering  ◼ The Ohio State University

Operators

 Arithmetic:  +  - *  /  %  **

◼ / is either ÷ or div, depending on operands

◼ Integer / (div) rounds towards -∞, not 0

◼ % is modulus, not remainder

1 / 3.0 #=> 0.3333333333333333

1 / 3   #=> 0 (same as Java)

-1 / 3  #=> -1 (not 0, differs from Java)

-1 % 3  #=> 2 (not -1, differs from Java)

 Bitwise:  ~  |  &  ^  <<  >>
5 | 2  #=> 7 (ie 0b101 | 0b10)

13 ^ 6 #=> 11 (ie 0b1101 ^ 0b0110)

5 << 2 #=> 20 (ie 0b101 << 2)



Computer Science and Engineering  ◼ The Ohio State University

To Ponder

Evaluate

1/3   /  1/2

-1/3   /  1/2

1/3r  /  1/2r

(1/3r) / (1/2r)

0.1 + 0.2 – 0.3



Computer Science and Engineering  ◼ The Ohio State University

To Ponder

Evaluate

1/3   /  1/2    #=> 0

-1/3   /  1/2    #=> -1

1/3r  /  1/2r   #=> 1/6r

(1/3r) / (1/2r)  #=> 2/3r

0.1 + 0.2 – 0.3  #=> 5.55111512312e-17



Computer Science and Engineering  ◼ The Ohio State University

Operators (Continued)

 Comparison:  <  >  <=  >=  <=>

◼ Last one is so-called “spaceship operator”

◼ Returns -1/0/1 iff LHS is 
smaller/equal/larger than RHS

'cab' <=> 'da' #=> -1

'cab' <=> 'ba' #=> 1

 Logical:  &&  ||  !  and  or  not

◼ Words have low precedence (below =)

◼ “do_this or do_that” idiom needs low-
binding

x = crazy or raise 'problem'



Computer Science and Engineering  ◼ The Ohio State University

Pseudo Variables

 Objects
◼ self, the receiver of the current method 

(recall “this” keyword in Java)

◼ nil, nothingness (recall null)

 Booleans
◼ true, false

◼ nil evaluates to false

◼ 0 is not false, it is true just like 1 or -4!

 Specials
◼ __FILE__, the current source file name

◼ __LINE__, the current line number



Computer Science and Engineering  ◼ The Ohio State University

Significance in Names

 A variable's name affects semantics!

 Variable name determines its scope
◼ Local: start with lowercase letter (or _)

◼ Global: start with $
 Many pre-defined global variables exist, e.g.:

◼ $/ is the input record separator (newline)

◼ $; is the default field separator (space)

◼ Instance: start with @

◼ Class: start with @@

 Variable name determines mutability
◼ Constant: start with uppercase (Size)

but idiom is all upper case (SIZE)



Computer Science and Engineering  ◼ The Ohio State University

Basic Statements: Conditionals

 Classic structure
if (boolean_condition) [then]

...

else

...

end

 But usually omit ( )'s and “then” keyword
if x < 10

puts 'small'

end

 if can also be a statement modifier
x = x + 1 if x < LIMIT

◼ Good for single-line body

◼ Good when statement execution is common case
◼ Good for positive conditions



Computer Science and Engineering  ◼ The Ohio State University

Variations on Conditionals

 Unless: equivalent to “if not…”
unless size >= 100

puts 'small'

end

◼ Do not use else with unless

◼ Do not use negative condition (unless !...)

 Can also be a statement modifier
x = x + 1 unless x >= LIMIT

◼ Good for: single-line body, positive condition

◼ Used for: Guard at beginning of method

raise 'negative argument' unless x >= 0



Computer Science and Engineering  ◼ The Ohio State University

Pitfalls with Conditionals

 Keyword elsif (not “else if”)
if x < 10

puts 'small'

elsif x < 20

puts 'medium'

else

puts 'large'

end

 If's do not create nested lexical scope
if x < 10

y = x

end

puts y # y is defined, but could be nil

puts z # NameError: undefined local var z



Computer Science and Engineering  ◼ The Ohio State University

Case Statements are General

[variable = ] case expression

when nil

statements execute if the expr was nil

when value # e.g. 0, 'start'

statements execute if expr equals value

when type # e.g. String

statements execute if expr resulted in Type

when /regexp/ # e.g. /[aeiou]/

statements execute if expr matches regexp

when min..max

statements execute if the expr is in range

else

statements

end



Computer Science and Engineering  ◼ The Ohio State University

Basic Iteration: While and Until

 Classic loop structure
while boolean_condition [do]

…

end

◼ Can also be used as a statement modifier
work while awake

 until is equivalent to “while not…”
until i > count

…

end

◼ Can also be a used as a statement modifier

 Pitfall: Modified block executes at least once
sleep while is_dark # may not sleep at all

begin i = i + 1 end while i < MAX

# always increments i at least once



Computer Science and Engineering  ◼ The Ohio State University

Functions

 Definition: keyword def
def foo(x, y)

return x + y

end

 Notice: no types in signature
◼ No types for parameters
◼ No type for return value

 But all functions return something
◼ Value of last statement is implicitly returned

◼ Convention: Omit explicit return statement
def foo(x, y)

x + y # last statement executed

end



Computer Science and Engineering  ◼ The Ohio State University

Function Calls

 Dot notation for method call
Math::PI.rationalize() # recvr Math::PI

 Convention: Omit ( )’s in definition of 
functions with no parameters

def launch() … end # bad

def launch   … end # good

 Paren’s can be omitted in calls too!
Math::PI.rationalize

puts 'hello world'

◼ Convention: Omit for “keyword-like” calls
attr_reader :name, :age

◼ Note: needed when chaining
foo(13).equal? value



Computer Science and Engineering  ◼ The Ohio State University

Sample Code Snippet

class UsersController < ApplicationController

before_action :logged_in_user, only: %i[edit update]

def update

if @user.update(user_params)

redirect_to @user, notice: "Success."

else

render :edit, status: :unprocessable_entity

end

end

def user_params

params.require(:user).permit(:name, :email,

:password)

end

end



Computer Science and Engineering  ◼ The Ohio State University

Summary

 Ruby is a general-purpose, imperative, 
object-oriented language

 Ruby is (usually) interpreted
◼ REPL

 Familiar flow-of-control and syntax

◼ Some new constructs (e.g., unless, until)

◼ Terse (e.g., optional parentheses, optional 
semicolons, statement modifiers)


	Slide 1: To Do TODAY
	Slide 2: To Ponder
	Slide 3: Ruby: Introduction, Basics
	Slide 4: Sample Code Snippet
	Slide 5: Ruby vs Java: Similarities
	Slide 6: But Ruby Looks Different
	Slide 7: Deeper Differences As Well
	Slide 8: Compiling Programs
	Slide 9: Interpreting Programs
	Slide 10: Combination of Both
	Slide 11: Ruby is (Usually) Interpretted
	Slide 12: Literals
	Slide 13: Comments and Statements
	Slide 14: Operators
	Slide 15: To Ponder
	Slide 16: To Ponder
	Slide 17: Operators (Continued)
	Slide 18: Pseudo Variables
	Slide 19: Significance in Names
	Slide 20: Basic Statements: Conditionals
	Slide 21: Variations on Conditionals
	Slide 22: Pitfalls with Conditionals
	Slide 23: Case Statements are General
	Slide 24: Basic Iteration: While and Until
	Slide 25: Functions
	Slide 26: Function Calls
	Slide 27: Sample Code Snippet
	Slide 28: Summary

