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The Need for Version Control

 Track evolution of a software artifact
◼ Development is often non-linear

 Older versions need to be supported

 Newer versions need to be developed

◼ Development is non-monotonic
 May need to undo some work, go back to an 

older version, or track down when a mistake 
was introduced

 Facilitate team-based development
◼ Multiple developers working on a common 

code base

◼ How can project be edited simultaneously? 
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Key Idea: A Repository

 Repository= working tree + store + index 
◼ Warning: “Repo” often used (incorrectly) to 

mean just the store or just the working tree

 Working tree = project itself
◼ Ordinary directory with files & subdirectories

 Store = history of project
◼ Hidden directory: don’t touch!

 Index = virtual snapshot
◼ Gateway for moving changes in the working 

tree into the store (aka stage, cache)

 History = DAG of commits
◼ Each node in graph corresponds to a 

complete snapshot of the entire project
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File Structure of a Repository

~/mashup/

├── css/

│ ├── buckeye-alert-resp.css

│ └── demo.css

├── demo-js.html

├── Gemfile

├── Gemfile.lock

├── .git/

│ ├── HEAD

│ ├── index

│ └── ...etc...

├── .gitignore

├── Rakefile

├── README.md

└── ...etc...
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Conceptual Structure

working tree
~/mashup/

store
~/mashup/.git/

wt

index
~/mashup/.git/index

ind
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A History of Commits

a b dc

working tree
~/mashup/

store
~/mashup/.git/

d's parent
is c

wt

commit b

revision β

𝛼 𝛽 𝛾 𝛿

index
~/mashup/.git/index

indtime
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Commit: Snapshot or Delta

 Each commit represents both

1. A complete snapshot of the project at that 
point in time (a revision), and

2. A delta of the changes made (a patch); 
that is, a diff between snapshots

 Different git actions use different 
views of a commit

◼ View as a snapshot is common

◼ Both are useful
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History is a DAG

 Every commit (except the first) has 1 
or more parents

a b gd

store

i

kf j

e

c

h

e has 1
parent

i has 2
parents

Initial commit
has no parents
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Example View of DAG
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Example View of DAG

$ git log --oneline --no-decorate --graph

* 1618849 clean up css

*   d579fa2 merge in improvements from master

|\

| * 0f10869 replace image-url helper in css

* | b595b10 add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* b4e201c wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop

* 515aaa3 create README.md

* eb26605 initial commit
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Commit

 Each commit is identified by a hash

◼ 160 bits (i.e., 40 hex digits)

◼ Practically guaranteed to be unique

◼ Can use short prefix of hash if unique

$ git show --name-only –-no-decorate

commit 16188493c252f6924baa17c9b84a4c1baaed438b

Author: Brutus Buckeye <brutus@users.noreply.github.com>

Date:   Mon Mar 29 15:30:50 2021 +0200

clean up css

source/stylesheets/_site.css
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History is a DAG

 A better picture would label each 
commit with its hash (prefix)

 But in these slides, we abbreviate the 
hash id's as just: 'a', 'b', 'c'…

eca7 96c9 c0a2d1bf 850a

512a8f59 a21adf2f
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Nomenclature: Branch

 Branch: a pointer to a commit

 Different from “branch” in DAG's shape

a b gd

store

i

kf jc

maint main rankings
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A Note on Changing Defaults

 Any name can be used for a branch

◼ Typically short, but hopefully descriptive

◼ Many branches, each with a unique name

 Initially, a repo has a single branch

◼ Repos created on GitHub use “main” as 
the initial branch name

◼ Repos created locally (git 2.42) still use 
old initial branch name (“master”)

 This default is user-configurable! (as of git 
2.28, 7/27/20) 
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Nomenclature: HEAD

 HEAD: a special reference, (usually) 
points to a branch

a b gd

store

i

kf jc

maint main rankings

HEAD
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Nomenclature: HEAD

 Useful to think of HEAD as being 
“attached” to a particular branch

a b gd

store

i

kf jc

maint rankingsmain

HEAD
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View of DAG with Branches

$ git log --oneline --graph

* 1618849 (HEAD -> main) clean up css

*   d579fa2 (alert) merge in improvements from master

|\

| * 0f10869 replace image-url helper in css

* | b595b10 add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* b4e201c wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop

* 515aaa3 create README.md

* eb26605 initial commit
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A “Clean” Repository

a b dc

wtmaint

𝛼 𝛽 𝛾 𝛿

𝛿

$ git status

On branch main

nothing to commit,

working directory clean

ind

δ

same
("wd clean")

same
("nothing
to commit")

main

HEAD
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Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wt

now differs
from index

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD
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Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wt

now differs
from index

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ
$ git status

On branch main

Changes not staged for commit:

modified: css/demo.css 

main

HEAD
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Add: Working Tree → Index

a b dc

wt

index = wt,
both differ
from HEAD

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

𝜺

$ git add . # current directory, and below

main

HEAD
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Add: Working Tree → Index

a b dc

wt

index = wt,
both differ
from HEAD

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

𝜺

$ git add . # current directory, and below

$ git status

On branch main

Changes to be committed:

modified: css/demo.css 

main

HEAD
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Commit: Index → Store

a b dc e

new commit
added to store

Store changed!
DAG extended

HEAD advanced
(with attached branch!)

maint

𝛼 𝛽 𝛾 𝛿

parent is
old HEAD

𝜀

wt

unaffected
(but now
clean)

𝜀

ind

𝜀

$ git commit

main

HEAD
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The (New) State of Repository

a b dc e

maint

𝛼 𝛽 𝛾 𝛿 𝜀

wt

𝜀

ind

𝜀

main

HEAD
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Creating a New Branch

a b dc e

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

wt

𝜀

ind

𝜀

$ git branch fix

main

HEAD
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Checkout: Changing Branch

a b dc e

HEAD

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

HEAD
moved

wt

𝜀

ind

𝜀

$ git checkout fix

Store unaffected (apart from HEAD)
Same DAG, branches

main
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Checkout: Changing Branch

a b dc e

HEAD

maint

HEAD moved

𝜀𝛼 𝛽 𝛾 𝛿

 Advice: checkout <branch> only when wt is clean

fix

now same
as maint

ind

𝜷

wt

𝜷

$ git checkout maint

main
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Edit Files in Working Tree

a b dc e

HEAD

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

now differs
from index

ind

𝛽

wt

𝜽

 Add files, remove files, edit files…

main
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Add & Commit: Update Store

a b dc e

HEAD

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

$ git add .

$ git commit

ind

wt

𝜃

𝜃

fix

main



Computer Science and Engineering  ◼ The Ohio State University

Merge: Bringing History together

 Bring work from another branch into 
current branch

◼ Implemented features, fixed bugs, etc.

 Updates current branch, not other

HEAD

othercurrent

HEAD

other current
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Merge – Case 1: Ancestor

 HEAD is an ancestor of other branch

a b dc e

𝜀𝛼 𝛽 𝛾 𝛿

HEAD

maint

wt

𝛽

main
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Fast-Forward Merge

a b dc e

𝜀𝛼 𝛽 𝛾 𝛿

HEAD

maint

wt

$ git merge main

𝜺

main
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Merge – Case 2: No Conflicts

a b dc e

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

wt

𝜀

main

HEAD
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Merge Automatically Commits

a b dc e

maint

f

g

$ git merge maint

𝛼 𝛽 𝛾 𝛿

𝜃

𝜇

𝜀

wt

𝝁

main

HEAD
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Merge – Case 3: Conflicts Exist

a b dc e

wt

$ git merge maint

ind

files that could
be merged
automatically

files with
conflicts
marked

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝜀′ 𝜀′′

main

HEAD
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Merge: Resolve Conflicts

a b dc e

wt

$ gedit somefile

ind

files with
conflicts
resolved

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝜀′′𝝁

main

HEAD
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Merge with Conflicts: Add

a b dc e

wt

$ git add somefile

ind

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝝁 𝝁

main

HEAD
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Merge with Conflicts: Commit

a b dc e

maint

f

g

$ git commit

𝛼 𝛽 𝛾 𝛿

𝜃

𝜇

𝜀

wt ind

𝜇 𝜇

main

HEAD
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Merge: Edit to Resolve Conflicts

https://code.visualstudio.com/docs/sourcecontrol/overview
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Merge: 3-way Merge Editor

https://code.visualstudio.com/docs/sourcecontrol/overview
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Summary

 Repository = working tree + store
◼ Store contains history

◼ History is a DAG of commits

◼ References, tags, and HEAD

 Commit/checkout are local operations
◼ Former changes store, latter working tree

 Merge
◼ Directional (merge other “into” HEAD)
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Git:
Distributed Version Control
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Demo

 Prep: Empty (but initialized) repo

 Linear development:
◼ Create, edit, rename, ls -la files

◼ Git: add, status, commit, log

 Checkout (time travel, detach HEAD)

 Branch (re-attach HEAD)

 More commits, see split in history

 Merge
◼ No conflict

◼ Fast-forward

 Play: git-school.github.io/visualizing-git

https://git-school.github.io/visualizing-git/
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What Does "D" Stand For?

 Distributed version control

◼ Multiple people, distributed across 
network

 Each person has their own repository!

◼ Everyone has their own store (history)!

◼ Big difference with older VCS (eg SVN)

 Units of data movement: changeset

◼ Communication between teammates is to 
bring stores in sync

◼ Basic operators: fetch and push
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Sarah's Repository

a b dc e

Sarah

wt

main

HEAD
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And Matt's Repository

a b dc e

Sarah

a b f

Matt

g

wt

wt

main

HEAD

main

HEAD
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Some Shared History

a b dc e

Sarah

a b f

Matt

g

wt

wt

main

HEAD

main

HEAD
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Fetch: Remote Store → Local

a b dc e

gf

Sarah

working
tree
unaffected!

wt

remote
branch

new changesets
added to store

mt/main

sarah$ git fetch mt

main

HEAD
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Remote Repository Unchanged

a b f

Matt

g

main

HEAD
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Workflow: Merge After Fetch

a b dc e

gf

h

mt/main

Sarah

sarah$ git merge mt/main

main

HEAD
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Remote Repository Unchanged

a b f

Matt

g

main

HEAD
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View of DAG with All Branches

$ git log --oneline --graph # shows local & remote

* 1618849 (HEAD -> main, origin/main) clean up css

*   d579fa2 (alert) merge in improvements from master

|\

| * 0f10869 replace image-url helper in css

* | b595b10 (origin/alert) add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* b4e201c wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop

* 515aaa3 create README.md

* eb26605 initial commit
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Your Turn

 Show the state of Matt's repository 
after each of the following steps

◼ Fetch (from Sarah)

◼ Merge
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Sarah and Matt's Repositories

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

main

HEAD

main

HEAD
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Some Shared History

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

main

HEAD

main

HEAD
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Your Turn: Fetch

matt$ git fetch sr
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Your Turn: Fetch

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

matt$ git fetch sr

main

HEAD

main

HEAD
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Fetch: After

a b

c

Matt

d

f g

e

h

sr/main

matt$ git fetch sr

main

HEAD
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Your Turn: Merge

matt$ git merge sr/main
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Your Turn: Merge

matt$ git merge sr/main

a b

c

Matt

d

f g

e

h

sr/mainmain

HEAD
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Merge: After

a b

c

Matt

d

f g

e

h

sr/main

matt$ git merge sr/main

main

HEAD
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Demo

 https://git-school.github.io/visualizing-
git/#upstream-changes

 Try:
git commit

git fetch origin # see origin/feature

git merge origin/feature # see feature

https://git-school.github.io/visualizing-git/
https://git-school.github.io/visualizing-git/
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Pull: Fetch then Merge

 A pull combines both fetch & merge
matt$ git pull sr

 Advice: Prefer explicit fetch, merge

◼ After fetch, examine new work
$ git log      # see commit messages

$ git checkout # see work

$ git diff     # compare

◼ Then merge

◼ Easier to adopt more complex workflows 
(e.g., rebasing instead of merging)
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Push: Local Store → Remote

 Push sends local commits to remote store

 Usually push one branch (at a time)
sarah$ git push mt fix

◼ Advances Matt's fix branch
◼ Advances Sarah's mt/fix remote branch

 Requires:
1. Matt's fix branch must not be his HEAD

2. Matt's fix branch must be ancestor of Sarah's

 Common practices:
1. Only push to bare repositories (bare means 

no working tree, ie no HEAD)
2. Get remote store's branch into local DAG (ie

fetch, merge, commit) before pushing 
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Remote's Branch is Ancestor

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

main

HEAD
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Push: Local Store → Remote

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

sarah$ git push mt fix

main

HEAD
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Push: After

a b dc e

Sarah

sarah$ git push mt fix

ea b c

Matt

d

working
tree
unaffected!

wt

HEAD

fix mt/fix

fixmain

HEAD
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Commit/Checkout vs Push/Fetch
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Common Topology: Star

 n-person team has n+1 repositories

◼ 1 shared central repository (bare!)

◼ 1 local repository / developer

 Each developer clones central repository

◼ Creates (local) copy of (entire) central repo

◼ Local repo has a remote called “origin”

◼ Default source/destination for fetch/push

 Variations for central repository:

◼ Everyone can read and write (ie push)

◼ Everyone can read, but only 1 person can 

write (responsible for pulling and merging)
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Common Topology: Star

Source: http://nvie.com/posts/a-successful-git-branching-model/

Bare repository
(no working tree)
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Summary

 Push/fetch to share your store with 
remote repositories
◼ Neither working tree is affected

 Branches in history are easy to form
◼ Committing when HEAD is not a leaf

◼ Fetching work based on earlier commit

 Team coordination

◼ One single, central repo

◼ Every developer pushes/fetches from their 
(local) repo to this central (remote) repo
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Project Groups: To Do

1. Find your group on Carmen (People)

2. Exchange contact information

◼ Phone, discord

◼ Schedules

3. Choose a group name
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Git:
Advanced Topics
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Basic Workflow: Overview

1. Configure git locally (everyone)

2. Create central repo (1 person)

3. Create local repo (everyone)

4. Local development (everyone):

◼ Commit locally

◼ Fetch/merge as appropriate

◼ Push to share
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Step 1: Configure Git Locally

 Each team member, in their own VM

◼ Req’d: Set identity for authoring commits

$ git config --global user.name "Brutus 

Buckeye"

$ git config --global user.email bb@osu.edu

◼ Rec'd: set default initial branch name (2.28+)

$ git config --global init.defaultBranch main

◼ Tips

 Add email to GitHub account (Settings > Email)

 Alternative: use GitHub-generated fake address:

◼ Settings > Email > Keep my address private

◼ Find ID+USERNAME@users.noreply.github.com

 Add your SSH key to your GitHub account
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Step 2: Initialize Central Rep

 One person, once per project

 Hosting services (GitHub, GitLab, 
BitBucket…) use a web interface for this 
step

 Alternative: a location that the group has 
access to (e.g. stdlinux):
◼ Create central repository in group's project 

directory (/project/c3901aa03)

$ cd /project/c3901aa03

$ mkdir proj1  # an ordinary directory

◼ Initialize this directory as a bare git 
repository, with group permissions

$ git init --bare --shared proj1
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Step 3: Create Local Repository

 Each team member, once, in their VM
◼ Create local repo by cloning the central one

$ git clone git@github.com:bb/proj1.git

◼ Copies entire repo, including store, and sets a 
remote called “origin”
$ cd proj1

proj1$ git remote –v # display info

origin git@github.com:bb/proj1.git (fetch)

origin git@github.com:bb/proj1.git (push)

 Different ways to clone
◼ SSH: Add your SSH key to the remote host, 

then it is easy to fetch/push

◼ Git Credential Manager
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Step 4: Local Development

 Each team member repeats:

◼ Edit and commit (to local repository) often

$ git status/add/rm/commit

◼ Pull others' work when you can benefit

$ git fetch origin # bring in changes

$ git log/checkout # examine new work

$ git merge, commit # merge work

◼ Push to central repository when confident

$ git push origin main # share
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Demo

 https://git-school.github.io/visualizing-
git/#upstream-changes

 Try:
git commit

git fetch origin # see origin/feature

git merge origin/feature # see feature

git push origin feature # see remote

https://git-school.github.io/visualizing-git/
https://git-school.github.io/visualizing-git/
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Your Turn: Playing with Git

 Navigate to class org on GH and find 
the repo called first-commits

 Clone the repo to your VM

 Do some development!

◼ Edit

◼ Inspect the store’s DAG
$ git log --graph --oneline --all

◼ Commit, fetch, merge, push…

◼ Rinse, repeat
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Professional Git

 Commit/branch conventions

 Deciding what goes in, and what stays 
out of the store

◼ Share all the things that should be shared

◼ Only share things that should be shared

 Normalizing contents of the store

◼ Windows vs linux line endings
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Commit/Branch Conventions

 Team strategy for managing the 
structure of the DAG (ie the store)

 Examples:

◼ “Main is always deployable”

 All work is done on other branches, merged 
with main only when result is executable

◼ “Feature branches”, “developer branches”

 Each feature developed on its own branch vs. 
each developer works on their own branch

◼ “Favor rebase over merge”

 Always append to latest origin/branch
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Example: Branch-Based Dev
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Example: Trunk-Based Dev
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What Goes Into Central Repo?

 Avoid developer-specific environment settings
◼ Hard-coded file/directory paths from local machine
◼ OK to include a sample config (each developer customizes 

but keeps their version out of store)

 Avoid living binaries (docx, pdf)
◼ Meaningless diffs

 Avoid generated files
◼ compiled files, the build

 Avoid IDE-specific files (.settings)
◼ Some generic ones are OK so it is easier to get started by 

cloning, especially if the team uses the same IDE

 Avoid private information
◼ Passwords, secret tokens
◼ Better: Use environment variables instead

 Agree on code formatting
◼ Auto-format is good, but only if everyone uses the same 

format settings!
◼ Spaces vs tabs, brace position, etc
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Ignoring Files from Working Tree

 Use a .gitignore file in root of project
◼ Committed as part of the project
◼ Consistent policy for everyone on team

 Examples: https://github.com/github/gitignore
# github:gitignore/Java.gitignore

# Compiled class file

*.class

# Log file

*.log

# Package Files #

*.jar

*.war

*.ear

*.zip

*.tar.gz

*.rar

https://github.com/github/gitignore
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Problem: End-of-line Confusion

 Differences between OS's in how a new line 
is encoded in a text file
◼ Windows: 2 bytes, CR + LF ("\r\n", 0x0D 0x0A)

◼ Unix/Mac: 1 byte, LF ("\n", 0x0A)

 Difference is hidden by most editors
◼ An IDE might recognize either when opening a 

file, but convert all to \r\n when saving

◼ Demo: hexdump (or VSCode hex editor)

 But difference matters to git when 
comparing files!

 Problem: OS differences within team
◼ Changing 1 line causes every line to be modified

◼ Flood of spurious changes masks the real edit
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Solution: Normalization

 Convention: Store uses \n (ie linux)
◼ Working tree uses OS's native eol

◼ Convert when moving data between the 
two (e.g., commit, checkout)

 Note: Applies to text files only
◼ A binary file, like a jpg, might contain 

0x0D and/or 0x0A, but they should never 
be converted

 How does git know whether a file is 
text or binary?
◼ Heuristics: auto-detect based on contents

◼ Configuration: filename matches a pattern
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Normalization With .gitattributes

 Use a .gitattributes file in root of project
◼ Committed as part of the project
◼ Consistent policy for everyone on team

 Example:
# Auto detect text files and perform LF normalization

* text=auto

# These files are text, should be normalized (crlf=>lf)

*.java      text

*.md        text

*.txt       text

*.classpath text

*.project   text

# These files are binary, should be left untouched

*.class     binary

*.jar       binary
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Ninja Git: Advanced Moves

 Temporary storage
stash

 Undoing big and small mistakes in the 
working tree

reset, checkout

 Undoing mistakes in store
amend

 DAG surgery
rebase
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Advanced: Temporary Storage

 Say you have uncommitted work and 
want to look at a different branch

 Checkout won't work! (Recall: "only 
checkout when wt is clean")

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD
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a b dc e

maint

𝛼 𝛽 𝛾 𝛿 𝜀

Stash: Push Work Onto a Stack

wt

clean

𝛿

ind

δ

$ git stash # repo now clean

$ git checkout …etc… # feel free to poke around

stashmain

HEAD
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Stash: Pop Work Off the Stack

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

$ git stash pop # restores state of wt/index

# equivalent to:

$ git stash apply # restore wt and index

$ git stash drop # restore store

main

HEAD
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Advanced: Undoing Big Mistakes

 Say you want to throw away all your 
uncommited work

◼ ie “Roll back” to last commited state

 Checkout HEAD won't work!

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD



Computer Science and Engineering  ◼ The Ohio State University

Reset: Discarding Changes

a b dc

maint

𝛼 𝛽 𝛾 𝛿

$ git reset --hard    # updates wt to be HEAD

$ git clean –-dry-run # list untracked files

$ git clean –-force   # remove untracked files 

ind

δ

replaced to be 
same as HEAD

wt

𝛿

main

HEAD
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Reset: Discarding Commits

a b dc

maint

𝛼 𝛽 𝛾 𝛿

$ git reset --hard HEAD~1

# no need to git clean, since wt was already clean

ind

replaced to be 
same as 
HEAD~1

wt

𝜸

𝜸

HEAD moved
(and attached branch)

now unreachable

main

HEAD
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Advanced: Undo Small Mistakes

 Say you want to throw away some of 
your uncommited work

◼ Restore a file to last committed version

a b dc

wt

Edits to
README.md

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD



Computer Science and Engineering  ◼ The Ohio State University

Advanced: Undo Small Mistakes

a b dc

wt

README.md
matches 𝛿

maint

𝛼 𝛽 𝛾 𝛿

𝜺’

ind

δ

$ git checkout -- README.md

# -- means: rest is file/path (not branch)

# git checkout README.md ok, if not ambiguous  

main

HEAD
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Advanced: Rewriting History
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The Power to Change History

 Changing the store lets us:

◼ Fix mistakes in recent commits

◼ Clean up messy DAGs to make history 
look more linear

 Rule: Never change shared history

◼ Once something has been pushed to a 
remote repo (e.g., origin), do not change 
that part of the DAG

◼ So: A push is really a commitment!
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Advanced: Rewriting History

 Problem 1: Wrong or incomplete 
commit

a b

𝛼 𝛽

ind

𝛽

wt

uncommited
changes

𝜸

main

HEAD
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Advanced: Rewriting History

 Problem 1: Wrong or incomplete 
commit

a b c

𝛼 𝛽 𝛾

wt

clean

𝛾

ind

𝛾

main

HEAD



Computer Science and Engineering  ◼ The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete 
commit

◼ Oops!  That wasn’t quite right…

a b c

𝛼 𝛽 𝛾

ind

𝛾

wt

uncommited
changes

𝜹

main

HEAD
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Advanced: Rewriting History

 Problem 1: Wrong or incomplete 
commit

◼ Oops!  That wasn’t quite right…

a b dc

𝛼 𝛽 𝛾 𝛿

wt

clean

𝛿

ind

𝛿

main

HEAD
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Advanced: Rewriting History

 Problem 1: Wrong or incomplete 
commit

◼ Oops!  That wasn’t quite right…

a b dc e

𝛼 𝛽 𝛾 𝛿 𝜀

wt

clean

𝜀

ind

𝜀

main

HEAD
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Advanced: Rewriting History

 Problem 1: Wrong or incomplete 
commit

 Result: Lots of tiny “fix it”, “oops”, 
“retry” commits

a b dc e

𝛼 𝛽 𝛾 𝛿 𝜀

wt

clean

𝜀

ind

𝜀

main

HEAD
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Commit --amend: Tip Repair

 Alternative: Change most recent 
commit(s)

a b c

𝛼 𝛽 𝛾

ind

𝛾

wt

uncommited
changes

𝜹

main

HEAD
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Commit --amend: Tip Repair

$ git add .

$ git commit –-amend –-no-edit

# no-edit keeps the same commit message

a b

𝛼 𝛽

wt

clean

𝛿

ind

𝛿
f

𝛿

Brand new commit,
different hash

main

HEAD
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Advanced: Rewriting History

 Problem 2: As an independent branch 
is being developed, main also evolves

a b

HEAD

menumain

f

𝛼 𝛽

𝜃
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Advanced: Rewriting History

 Problem 2: As an independent branch 
is being developed, main also evolves

a b c

menu

f

𝛼 𝛽 𝛾

𝜃

HEAD

main
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Advanced: Rewriting History

 Problem 2: As an independent branch 
is being developed, main also evolves

 Result: Need periodic merges of main 
with (incomplete) branch

a b c

menu

f

𝛼 𝛽 𝛾

𝜃

HEAD

main
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Advanced: Rewriting History

 Problem 2: As an independent branch 
is being developed, main also evolves

 Result: Need periodic merges of main 
with (incomplete) branch

a b dc e

HEAD

main

f

𝛼 𝛽 𝛾 𝛿

𝜃

𝜀

g

κ

menu
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Advanced: Rewriting History

 Problem 2: As an independent branch 
is being developed, main also evolves

 Result: Need periodic merges of main 
with (incomplete) branch

a b dc e

HEAD

main

f h

𝛼 𝛽 𝛾 𝛿

𝜃 𝜇

𝜀

g

κ

menu
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Rebase: DAG Surgery

 Alternative: Move commits to a 
different part of the DAG

a b dc

f

𝛼 𝛽 𝛾 𝛿

𝜃

g

κ

menu

HEAD

main
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Rebase: DAG Surgery

a b dc

f

𝛼 𝛽 𝛾 𝛿

𝜃

g

κ

menu

HEAD

main

$ git rebase main

# merging main into menu is now a fast-forward
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Git Clients and Hosting Services

 Recommend'n: Know the command line!

 IDEs are helpful too
◼ VSCode, plus Git Graph extension

 Lots of sites for hosting your repos:
◼ GitHub, GitLab, Bitbucket, SourceForge…

◼ See: git.wiki.kernel.org/index.php/GitHosting

 These cloud services provide
◼ Storage space, account/access management

◼ Pretty web interface

◼ Issues, bug tracking

◼ Workflow (eg forks) to promote contributions 
from others

https://git.wiki.kernel.org/index.php/GitHosting
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Clarity

git != GitHub
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Warning: Academic Misconduct

 GitHub is a very popular service
◼ New repos are public by default

◼ Even free plan allows unlimited private repo’s 
(and collaborators)

◼ 3901 has an organization for your private 
repo’s and team access

 Other services (e.g. GitLab, Bitbucket) 
have similar issues

 Public repo's containing coursework can 
create academic misconduct issues
◼ Problems for poster

◼ Problems for plagiarist
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Summary

 Workflow
◼ Fetch/push frequency
◼ Respect team conventions for how/when 

to use different branches

 Central repo is a shared resource
◼ Contains common (source) code

◼ Normalize line endings and formats

 Advanced techniques
◼ Stash, reset, rebase

 Advice
◼ Learn by using the command line
◼ Beware academic misconduct
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