

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Git:
(Distributed) Version Control

Lecture 2

Computer Science and Engineering ◼ The Ohio State University

The Need for Version Control

 Track evolution of a software artifact
◼ Development is often non-linear

 Older versions need to be supported

 Newer versions need to be developed

◼ Development is non-monotonic
 May need to undo some work, go back to an

older version, or track down when a mistake
was introduced

 Facilitate team-based development
◼ Multiple developers working on a common

code base

◼ How can project be edited simultaneously?

Computer Science and Engineering ◼ The Ohio State University

Key Idea: A Repository

 Repository= working tree + store + index
◼ Warning: “Repo” often used (incorrectly) to

mean just the store or just the working tree

 Working tree = project itself
◼ Ordinary directory with files & subdirectories

 Store = history of project
◼ Hidden directory: don’t touch!

 Index = virtual snapshot
◼ Gateway for moving changes in the working

tree into the store (aka stage, cache)

 History = DAG of commits
◼ Each node in graph corresponds to a

complete snapshot of the entire project

Computer Science and Engineering ◼ The Ohio State University

File Structure of a Repository

~/mashup/

├── css/

│ ├── buckeye-alert-resp.css

│ └── demo.css

├── demo-js.html

├── Gemfile

├── Gemfile.lock

├── .git/

│ ├── HEAD

│ ├── index

│ └── ...etc...

├── .gitignore

├── Rakefile

├── README.md

└── ...etc...

Computer Science and Engineering ◼ The Ohio State University

Conceptual Structure

working tree
~/mashup/

store
~/mashup/.git/

wt

index
~/mashup/.git/index

ind

Computer Science and Engineering ◼ The Ohio State University

A History of Commits

a b dc

working tree
~/mashup/

store
~/mashup/.git/

d's parent
is c

wt

commit b

revision β

𝛼 𝛽 𝛾 𝛿

index
~/mashup/.git/index

indtime

Computer Science and Engineering ◼ The Ohio State University

Commit: Snapshot or Delta

 Each commit represents both

1. A complete snapshot of the project at that
point in time (a revision), and

2. A delta of the changes made (a patch);
that is, a diff between snapshots

 Different git actions use different
views of a commit

◼ View as a snapshot is common

◼ Both are useful

Computer Science and Engineering ◼ The Ohio State University

History is a DAG

 Every commit (except the first) has 1
or more parents

a b gd

store

i

kf j

e

c

h

e has 1
parent

i has 2
parents

Initial commit
has no parents

Computer Science and Engineering ◼ The Ohio State University

Example View of DAG

Computer Science and Engineering ◼ The Ohio State University

Example View of DAG

$ git log --oneline --no-decorate --graph

* 1618849 clean up css

* d579fa2 merge in improvements from master

|\

| * 0f10869 replace image-url helper in css

* | b595b10 add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* b4e201c wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop

* 515aaa3 create README.md

* eb26605 initial commit

Computer Science and Engineering ◼ The Ohio State University

Commit

 Each commit is identified by a hash

◼ 160 bits (i.e., 40 hex digits)

◼ Practically guaranteed to be unique

◼ Can use short prefix of hash if unique

$ git show --name-only –-no-decorate

commit 16188493c252f6924baa17c9b84a4c1baaed438b

Author: Brutus Buckeye <brutus@users.noreply.github.com>

Date: Mon Mar 29 15:30:50 2021 +0200

clean up css

source/stylesheets/_site.css

Computer Science and Engineering ◼ The Ohio State University

History is a DAG

 A better picture would label each
commit with its hash (prefix)

 But in these slides, we abbreviate the
hash id's as just: 'a', 'b', 'c'…

eca7 96c9 c0a2d1bf 850a

512a8f59 a21adf2f

Computer Science and Engineering ◼ The Ohio State University

Nomenclature: Branch

 Branch: a pointer to a commit

 Different from “branch” in DAG's shape

a b gd

store

i

kf jc

maint main rankings

Computer Science and Engineering ◼ The Ohio State University

A Note on Changing Defaults

 Any name can be used for a branch

◼ Typically short, but hopefully descriptive

◼ Many branches, each with a unique name

 Initially, a repo has a single branch

◼ Repos created on GitHub use “main” as
the initial branch name

◼ Repos created locally (git 2.42) still use
old initial branch name (“master”)

 This default is user-configurable! (as of git
2.28, 7/27/20)

Computer Science and Engineering ◼ The Ohio State University

Nomenclature: HEAD

 HEAD: a special reference, (usually)
points to a branch

a b gd

store

i

kf jc

maint main rankings

HEAD

Computer Science and Engineering ◼ The Ohio State University

Nomenclature: HEAD

 Useful to think of HEAD as being
“attached” to a particular branch

a b gd

store

i

kf jc

maint rankingsmain

HEAD

Computer Science and Engineering ◼ The Ohio State University

View of DAG with Branches

$ git log --oneline --graph

* 1618849 (HEAD -> main) clean up css

* d579fa2 (alert) merge in improvements from master

|\

| * 0f10869 replace image-url helper in css

* | b595b10 add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* b4e201c wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop

* 515aaa3 create README.md

* eb26605 initial commit

Computer Science and Engineering ◼ The Ohio State University

A “Clean” Repository

a b dc

wtmaint

𝛼 𝛽 𝛾 𝛿

𝛿

$ git status

On branch main

nothing to commit,

working directory clean

ind

δ

same
("wd clean")

same
("nothing
to commit")

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wt

now differs
from index

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wt

now differs
from index

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ
$ git status

On branch main

Changes not staged for commit:

modified: css/demo.css

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Add: Working Tree → Index

a b dc

wt

index = wt,
both differ
from HEAD

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

𝜺

$ git add . # current directory, and below

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Add: Working Tree → Index

a b dc

wt

index = wt,
both differ
from HEAD

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

𝜺

$ git add . # current directory, and below

$ git status

On branch main

Changes to be committed:

modified: css/demo.css

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Commit: Index → Store

a b dc e

new commit
added to store

Store changed!
DAG extended

HEAD advanced
(with attached branch!)

maint

𝛼 𝛽 𝛾 𝛿

parent is
old HEAD

𝜀

wt

unaffected
(but now
clean)

𝜀

ind

𝜀

$ git commit

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

The (New) State of Repository

a b dc e

maint

𝛼 𝛽 𝛾 𝛿 𝜀

wt

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Creating a New Branch

a b dc e

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

wt

𝜀

ind

𝜀

$ git branch fix

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Checkout: Changing Branch

a b dc e

HEAD

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

HEAD
moved

wt

𝜀

ind

𝜀

$ git checkout fix

Store unaffected (apart from HEAD)
Same DAG, branches

main

Computer Science and Engineering ◼ The Ohio State University

Checkout: Changing Branch

a b dc e

HEAD

maint

HEAD moved

𝜀𝛼 𝛽 𝛾 𝛿

 Advice: checkout <branch> only when wt is clean

fix

now same
as maint

ind

𝜷

wt

𝜷

$ git checkout maint

main

Computer Science and Engineering ◼ The Ohio State University

Edit Files in Working Tree

a b dc e

HEAD

maint

𝜀𝛼 𝛽 𝛾 𝛿

fix

now differs
from index

ind

𝛽

wt

𝜽

 Add files, remove files, edit files…

main

Computer Science and Engineering ◼ The Ohio State University

Add & Commit: Update Store

a b dc e

HEAD

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

$ git add .

$ git commit

ind

wt

𝜃

𝜃

fix

main

Computer Science and Engineering ◼ The Ohio State University

Merge: Bringing History together

 Bring work from another branch into
current branch

◼ Implemented features, fixed bugs, etc.

 Updates current branch, not other

HEAD

othercurrent

HEAD

other current

Computer Science and Engineering ◼ The Ohio State University

Merge – Case 1: Ancestor

 HEAD is an ancestor of other branch

a b dc e

𝜀𝛼 𝛽 𝛾 𝛿

HEAD

maint

wt

𝛽

main

Computer Science and Engineering ◼ The Ohio State University

Fast-Forward Merge

a b dc e

𝜀𝛼 𝛽 𝛾 𝛿

HEAD

maint

wt

$ git merge main

𝜺

main

Computer Science and Engineering ◼ The Ohio State University

Merge – Case 2: No Conflicts

a b dc e

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

wt

𝜀

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Merge Automatically Commits

a b dc e

maint

f

g

$ git merge maint

𝛼 𝛽 𝛾 𝛿

𝜃

𝜇

𝜀

wt

𝝁

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Merge – Case 3: Conflicts Exist

a b dc e

wt

$ git merge maint

ind

files that could
be merged
automatically

files with
conflicts
marked

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝜀′ 𝜀′′

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Merge: Resolve Conflicts

a b dc e

wt

$ gedit somefile

ind

files with
conflicts
resolved

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝜀′′𝝁

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Merge with Conflicts: Add

a b dc e

wt

$ git add somefile

ind

maint

f

𝜀𝛼 𝛽 𝛾 𝛿

𝜃

𝝁 𝝁

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Merge with Conflicts: Commit

a b dc e

maint

f

g

$ git commit

𝛼 𝛽 𝛾 𝛿

𝜃

𝜇

𝜀

wt ind

𝜇 𝜇

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Merge: Edit to Resolve Conflicts

https://code.visualstudio.com/docs/sourcecontrol/overview

Computer Science and Engineering ◼ The Ohio State University

Merge: 3-way Merge Editor

https://code.visualstudio.com/docs/sourcecontrol/overview

Computer Science and Engineering ◼ The Ohio State University

Summary

 Repository = working tree + store
◼ Store contains history

◼ History is a DAG of commits

◼ References, tags, and HEAD

 Commit/checkout are local operations
◼ Former changes store, latter working tree

 Merge
◼ Directional (merge other “into” HEAD)

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Git:
Distributed Version Control

Computer Science and Engineering ◼ The Ohio State University

Demo

 Prep: Empty (but initialized) repo

 Linear development:
◼ Create, edit, rename, ls -la files

◼ Git: add, status, commit, log

 Checkout (time travel, detach HEAD)

 Branch (re-attach HEAD)

 More commits, see split in history

 Merge
◼ No conflict

◼ Fast-forward

 Play: git-school.github.io/visualizing-git

https://git-school.github.io/visualizing-git/

Computer Science and Engineering ◼ The Ohio State University

What Does "D" Stand For?

 Distributed version control

◼ Multiple people, distributed across
network

 Each person has their own repository!

◼ Everyone has their own store (history)!

◼ Big difference with older VCS (eg SVN)

 Units of data movement: changeset

◼ Communication between teammates is to
bring stores in sync

◼ Basic operators: fetch and push

Computer Science and Engineering ◼ The Ohio State University

Sarah's Repository

a b dc e

Sarah

wt

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

And Matt's Repository

a b dc e

Sarah

a b f

Matt

g

wt

wt

main

HEAD

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Some Shared History

a b dc e

Sarah

a b f

Matt

g

wt

wt

main

HEAD

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Fetch: Remote Store → Local

a b dc e

gf

Sarah

working
tree
unaffected!

wt

remote
branch

new changesets
added to store

mt/main

sarah$ git fetch mt

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Remote Repository Unchanged

a b f

Matt

g

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Workflow: Merge After Fetch

a b dc e

gf

h

mt/main

Sarah

sarah$ git merge mt/main

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Remote Repository Unchanged

a b f

Matt

g

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

View of DAG with All Branches

$ git log --oneline --graph # shows local & remote

* 1618849 (HEAD -> main, origin/main) clean up css

* d579fa2 (alert) merge in improvements from master

|\

| * 0f10869 replace image-url helper in css

* | b595b10 (origin/alert) add buckeye alert notes

* | a6e8eb3 add raw buckeye alert download

|/

* b4e201c wrap osu layout around content

* e9d3686 add Rakefile and refactor schedule loop

* 515aaa3 create README.md

* eb26605 initial commit

Computer Science and Engineering ◼ The Ohio State University

Your Turn

 Show the state of Matt's repository
after each of the following steps

◼ Fetch (from Sarah)

◼ Merge

Computer Science and Engineering ◼ The Ohio State University

Sarah and Matt's Repositories

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

main

HEAD

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Some Shared History

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

main

HEAD

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Your Turn: Fetch

matt$ git fetch sr

Computer Science and Engineering ◼ The Ohio State University

Your Turn: Fetch

a b dc e

gf

Sarah

h

mt/main

a b f

Matt

g

matt$ git fetch sr

main

HEAD

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Fetch: After

a b

c

Matt

d

f g

e

h

sr/main

matt$ git fetch sr

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Your Turn: Merge

matt$ git merge sr/main

Computer Science and Engineering ◼ The Ohio State University

Your Turn: Merge

matt$ git merge sr/main

a b

c

Matt

d

f g

e

h

sr/mainmain

HEAD

Computer Science and Engineering ◼ The Ohio State University

Merge: After

a b

c

Matt

d

f g

e

h

sr/main

matt$ git merge sr/main

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Demo

 https://git-school.github.io/visualizing-
git/#upstream-changes

 Try:
git commit

git fetch origin # see origin/feature

git merge origin/feature # see feature

https://git-school.github.io/visualizing-git/
https://git-school.github.io/visualizing-git/

Computer Science and Engineering ◼ The Ohio State University

Pull: Fetch then Merge

 A pull combines both fetch & merge
matt$ git pull sr

 Advice: Prefer explicit fetch, merge

◼ After fetch, examine new work
$ git log # see commit messages

$ git checkout # see work

$ git diff # compare

◼ Then merge

◼ Easier to adopt more complex workflows
(e.g., rebasing instead of merging)

Computer Science and Engineering ◼ The Ohio State University

Push: Local Store → Remote

 Push sends local commits to remote store

 Usually push one branch (at a time)
sarah$ git push mt fix

◼ Advances Matt's fix branch
◼ Advances Sarah's mt/fix remote branch

 Requires:
1. Matt's fix branch must not be his HEAD

2. Matt's fix branch must be ancestor of Sarah's

 Common practices:
1. Only push to bare repositories (bare means

no working tree, ie no HEAD)
2. Get remote store's branch into local DAG (ie

fetch, merge, commit) before pushing

Computer Science and Engineering ◼ The Ohio State University

Remote's Branch is Ancestor

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Push: Local Store → Remote

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

sarah$ git push mt fix

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Push: After

a b dc e

Sarah

sarah$ git push mt fix

ea b c

Matt

d

working
tree
unaffected!

wt

HEAD

fix mt/fix

fixmain

HEAD

Computer Science and Engineering ◼ The Ohio State University

Commit/Checkout vs Push/Fetch

Computer Science and Engineering ◼ The Ohio State University

Common Topology: Star

 n-person team has n+1 repositories

◼ 1 shared central repository (bare!)

◼ 1 local repository / developer

 Each developer clones central repository

◼ Creates (local) copy of (entire) central repo

◼ Local repo has a remote called “origin”

◼ Default source/destination for fetch/push

 Variations for central repository:

◼ Everyone can read and write (ie push)

◼ Everyone can read, but only 1 person can

write (responsible for pulling and merging)

Computer Science and Engineering ◼ The Ohio State University

Common Topology: Star

Source: http://nvie.com/posts/a-successful-git-branching-model/

Bare repository
(no working tree)

Computer Science and Engineering ◼ The Ohio State University

Summary

 Push/fetch to share your store with
remote repositories
◼ Neither working tree is affected

 Branches in history are easy to form
◼ Committing when HEAD is not a leaf

◼ Fetching work based on earlier commit

 Team coordination

◼ One single, central repo

◼ Every developer pushes/fetches from their
(local) repo to this central (remote) repo

Computer Science and Engineering ◼ The Ohio State University

Project Groups: To Do

1. Find your group on Carmen (People)

2. Exchange contact information

◼ Phone, discord

◼ Schedules

3. Choose a group name

Computer Science and Engineering ◼ College of Engineering ◼ The Ohio State University

Git:
Advanced Topics

Computer Science and Engineering ◼ The Ohio State University

Basic Workflow: Overview

1. Configure git locally (everyone)

2. Create central repo (1 person)

3. Create local repo (everyone)

4. Local development (everyone):

◼ Commit locally

◼ Fetch/merge as appropriate

◼ Push to share

Computer Science and Engineering ◼ The Ohio State University

Step 1: Configure Git Locally

 Each team member, in their own VM

◼ Req’d: Set identity for authoring commits

$ git config --global user.name "Brutus

Buckeye"

$ git config --global user.email bb@osu.edu

◼ Rec'd: set default initial branch name (2.28+)

$ git config --global init.defaultBranch main

◼ Tips

 Add email to GitHub account (Settings > Email)

 Alternative: use GitHub-generated fake address:

◼ Settings > Email > Keep my address private

◼ Find ID+USERNAME@users.noreply.github.com

 Add your SSH key to your GitHub account

Computer Science and Engineering ◼ The Ohio State University

Step 2: Initialize Central Rep

 One person, once per project

 Hosting services (GitHub, GitLab,
BitBucket…) use a web interface for this
step

 Alternative: a location that the group has
access to (e.g. stdlinux):
◼ Create central repository in group's project

directory (/project/c3901aa03)

$ cd /project/c3901aa03

$ mkdir proj1 # an ordinary directory

◼ Initialize this directory as a bare git
repository, with group permissions

$ git init --bare --shared proj1

Computer Science and Engineering ◼ The Ohio State University

Step 3: Create Local Repository

 Each team member, once, in their VM
◼ Create local repo by cloning the central one

$ git clone git@github.com:bb/proj1.git

◼ Copies entire repo, including store, and sets a
remote called “origin”
$ cd proj1

proj1$ git remote –v # display info

origin git@github.com:bb/proj1.git (fetch)

origin git@github.com:bb/proj1.git (push)

 Different ways to clone
◼ SSH: Add your SSH key to the remote host,

then it is easy to fetch/push

◼ Git Credential Manager

Computer Science and Engineering ◼ The Ohio State University

Step 4: Local Development

 Each team member repeats:

◼ Edit and commit (to local repository) often

$ git status/add/rm/commit

◼ Pull others' work when you can benefit

$ git fetch origin # bring in changes

$ git log/checkout # examine new work

$ git merge, commit # merge work

◼ Push to central repository when confident

$ git push origin main # share

Computer Science and Engineering ◼ The Ohio State University

Demo

 https://git-school.github.io/visualizing-
git/#upstream-changes

 Try:
git commit

git fetch origin # see origin/feature

git merge origin/feature # see feature

git push origin feature # see remote

https://git-school.github.io/visualizing-git/
https://git-school.github.io/visualizing-git/

Computer Science and Engineering ◼ The Ohio State University

Your Turn: Playing with Git

 Navigate to class org on GH and find
the repo called first-commits

 Clone the repo to your VM

 Do some development!

◼ Edit

◼ Inspect the store’s DAG
$ git log --graph --oneline --all

◼ Commit, fetch, merge, push…

◼ Rinse, repeat

Computer Science and Engineering ◼ The Ohio State University

Professional Git

 Commit/branch conventions

 Deciding what goes in, and what stays
out of the store

◼ Share all the things that should be shared

◼ Only share things that should be shared

 Normalizing contents of the store

◼ Windows vs linux line endings

Computer Science and Engineering ◼ The Ohio State University

Commit/Branch Conventions

 Team strategy for managing the
structure of the DAG (ie the store)

 Examples:

◼ “Main is always deployable”

 All work is done on other branches, merged
with main only when result is executable

◼ “Feature branches”, “developer branches”

 Each feature developed on its own branch vs.
each developer works on their own branch

◼ “Favor rebase over merge”

 Always append to latest origin/branch

Computer Science and Engineering ◼ The Ohio State University

Example: Branch-Based Dev

Computer Science and Engineering ◼ The Ohio State University

Example: Trunk-Based Dev

Computer Science and Engineering ◼ The Ohio State University

What Goes Into Central Repo?

 Avoid developer-specific environment settings
◼ Hard-coded file/directory paths from local machine
◼ OK to include a sample config (each developer customizes

but keeps their version out of store)

 Avoid living binaries (docx, pdf)
◼ Meaningless diffs

 Avoid generated files
◼ compiled files, the build

 Avoid IDE-specific files (.settings)
◼ Some generic ones are OK so it is easier to get started by

cloning, especially if the team uses the same IDE

 Avoid private information
◼ Passwords, secret tokens
◼ Better: Use environment variables instead

 Agree on code formatting
◼ Auto-format is good, but only if everyone uses the same

format settings!
◼ Spaces vs tabs, brace position, etc

Computer Science and Engineering ◼ The Ohio State University

Ignoring Files from Working Tree

 Use a .gitignore file in root of project
◼ Committed as part of the project
◼ Consistent policy for everyone on team

 Examples: https://github.com/github/gitignore
github:gitignore/Java.gitignore

Compiled class file

*.class

Log file

*.log

Package Files

*.jar

*.war

*.ear

*.zip

*.tar.gz

*.rar

https://github.com/github/gitignore

Computer Science and Engineering ◼ The Ohio State University

Problem: End-of-line Confusion

 Differences between OS's in how a new line
is encoded in a text file
◼ Windows: 2 bytes, CR + LF ("\r\n", 0x0D 0x0A)

◼ Unix/Mac: 1 byte, LF ("\n", 0x0A)

 Difference is hidden by most editors
◼ An IDE might recognize either when opening a

file, but convert all to \r\n when saving

◼ Demo: hexdump (or VSCode hex editor)

 But difference matters to git when
comparing files!

 Problem: OS differences within team
◼ Changing 1 line causes every line to be modified

◼ Flood of spurious changes masks the real edit

Computer Science and Engineering ◼ The Ohio State University

Solution: Normalization

 Convention: Store uses \n (ie linux)
◼ Working tree uses OS's native eol

◼ Convert when moving data between the
two (e.g., commit, checkout)

 Note: Applies to text files only
◼ A binary file, like a jpg, might contain

0x0D and/or 0x0A, but they should never
be converted

 How does git know whether a file is
text or binary?
◼ Heuristics: auto-detect based on contents

◼ Configuration: filename matches a pattern

Computer Science and Engineering ◼ The Ohio State University

Normalization With .gitattributes

 Use a .gitattributes file in root of project
◼ Committed as part of the project
◼ Consistent policy for everyone on team

 Example:
Auto detect text files and perform LF normalization

* text=auto

These files are text, should be normalized (crlf=>lf)

*.java text

*.md text

*.txt text

*.classpath text

*.project text

These files are binary, should be left untouched

*.class binary

*.jar binary

Computer Science and Engineering ◼ The Ohio State University

Ninja Git: Advanced Moves

 Temporary storage
stash

 Undoing big and small mistakes in the
working tree

reset, checkout

 Undoing mistakes in store
amend

 DAG surgery
rebase

Computer Science and Engineering ◼ The Ohio State University

Advanced: Temporary Storage

 Say you have uncommitted work and
want to look at a different branch

 Checkout won't work! (Recall: "only
checkout when wt is clean")

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

a b dc e

maint

𝛼 𝛽 𝛾 𝛿 𝜀

Stash: Push Work Onto a Stack

wt

clean

𝛿

ind

δ

$ git stash # repo now clean

$ git checkout …etc… # feel free to poke around

stashmain

HEAD

Computer Science and Engineering ◼ The Ohio State University

Stash: Pop Work Off the Stack

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

$ git stash pop # restores state of wt/index

equivalent to:

$ git stash apply # restore wt and index

$ git stash drop # restore store

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Undoing Big Mistakes

 Say you want to throw away all your
uncommited work

◼ ie “Roll back” to last commited state

 Checkout HEAD won't work!

a b dc

wt

uncommited
changes

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Reset: Discarding Changes

a b dc

maint

𝛼 𝛽 𝛾 𝛿

$ git reset --hard # updates wt to be HEAD

$ git clean –-dry-run # list untracked files

$ git clean –-force # remove untracked files

ind

δ

replaced to be
same as HEAD

wt

𝛿

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Reset: Discarding Commits

a b dc

maint

𝛼 𝛽 𝛾 𝛿

$ git reset --hard HEAD~1

no need to git clean, since wt was already clean

ind

replaced to be
same as
HEAD~1

wt

𝜸

𝜸

HEAD moved
(and attached branch)

now unreachable

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Undo Small Mistakes

 Say you want to throw away some of
your uncommited work

◼ Restore a file to last committed version

a b dc

wt

Edits to
README.md

maint

𝛼 𝛽 𝛾 𝛿

𝜺

ind

δ

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Undo Small Mistakes

a b dc

wt

README.md
matches 𝛿

maint

𝛼 𝛽 𝛾 𝛿

𝜺’

ind

δ

$ git checkout -- README.md

-- means: rest is file/path (not branch)

git checkout README.md ok, if not ambiguous

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

Computer Science and Engineering ◼ The Ohio State University

The Power to Change History

 Changing the store lets us:

◼ Fix mistakes in recent commits

◼ Clean up messy DAGs to make history
look more linear

 Rule: Never change shared history

◼ Once something has been pushed to a
remote repo (e.g., origin), do not change
that part of the DAG

◼ So: A push is really a commitment!

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

a b

𝛼 𝛽

ind

𝛽

wt

uncommited
changes

𝜸

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

a b c

𝛼 𝛽 𝛾

wt

clean

𝛾

ind

𝛾

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

◼ Oops! That wasn’t quite right…

a b c

𝛼 𝛽 𝛾

ind

𝛾

wt

uncommited
changes

𝜹

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

◼ Oops! That wasn’t quite right…

a b dc

𝛼 𝛽 𝛾 𝛿

wt

clean

𝛿

ind

𝛿

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

◼ Oops! That wasn’t quite right…

a b dc e

𝛼 𝛽 𝛾 𝛿 𝜀

wt

clean

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

 Result: Lots of tiny “fix it”, “oops”,
“retry” commits

a b dc e

𝛼 𝛽 𝛾 𝛿 𝜀

wt

clean

𝜀

ind

𝜀

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Commit --amend: Tip Repair

 Alternative: Change most recent
commit(s)

a b c

𝛼 𝛽 𝛾

ind

𝛾

wt

uncommited
changes

𝜹

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Commit --amend: Tip Repair

$ git add .

$ git commit –-amend –-no-edit

no-edit keeps the same commit message

a b

𝛼 𝛽

wt

clean

𝛿

ind

𝛿
f

𝛿

Brand new commit,
different hash

main

HEAD

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

a b

HEAD

menumain

f

𝛼 𝛽

𝜃

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

a b c

menu

f

𝛼 𝛽 𝛾

𝜃

HEAD

main

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b c

menu

f

𝛼 𝛽 𝛾

𝜃

HEAD

main

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b dc e

HEAD

main

f

𝛼 𝛽 𝛾 𝛿

𝜃

𝜀

g

κ

menu

Computer Science and Engineering ◼ The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b dc e

HEAD

main

f h

𝛼 𝛽 𝛾 𝛿

𝜃 𝜇

𝜀

g

κ

menu

Computer Science and Engineering ◼ The Ohio State University

Rebase: DAG Surgery

 Alternative: Move commits to a
different part of the DAG

a b dc

f

𝛼 𝛽 𝛾 𝛿

𝜃

g

κ

menu

HEAD

main

Computer Science and Engineering ◼ The Ohio State University

Rebase: DAG Surgery

a b dc

f

𝛼 𝛽 𝛾 𝛿

𝜃

g

κ

menu

HEAD

main

$ git rebase main

merging main into menu is now a fast-forward

Computer Science and Engineering ◼ The Ohio State University

Git Clients and Hosting Services

 Recommend'n: Know the command line!

 IDEs are helpful too
◼ VSCode, plus Git Graph extension

 Lots of sites for hosting your repos:
◼ GitHub, GitLab, Bitbucket, SourceForge…

◼ See: git.wiki.kernel.org/index.php/GitHosting

 These cloud services provide
◼ Storage space, account/access management

◼ Pretty web interface

◼ Issues, bug tracking

◼ Workflow (eg forks) to promote contributions
from others

https://git.wiki.kernel.org/index.php/GitHosting

Computer Science and Engineering ◼ The Ohio State University

Clarity

git != GitHub

Computer Science and Engineering ◼ The Ohio State University

Warning: Academic Misconduct

 GitHub is a very popular service
◼ New repos are public by default

◼ Even free plan allows unlimited private repo’s
(and collaborators)

◼ 3901 has an organization for your private
repo’s and team access

 Other services (e.g. GitLab, Bitbucket)
have similar issues

 Public repo's containing coursework can
create academic misconduct issues
◼ Problems for poster

◼ Problems for plagiarist

Computer Science and Engineering ◼ The Ohio State University

Summary

 Workflow
◼ Fetch/push frequency
◼ Respect team conventions for how/when

to use different branches

 Central repo is a shared resource
◼ Contains common (source) code

◼ Normalize line endings and formats

 Advanced techniques
◼ Stash, reset, rebase

 Advice
◼ Learn by using the command line
◼ Beware academic misconduct

	Slide 1
	Slide 2: Git: (Distributed) Version Control
	Slide 3: The Need for Version Control
	Slide 4: Key Idea: A Repository
	Slide 5: File Structure of a Repository
	Slide 6: Conceptual Structure
	Slide 7: A History of Commits
	Slide 8: Commit: Snapshot or Delta
	Slide 9: History is a DAG
	Slide 10: Example View of DAG
	Slide 11: Example View of DAG
	Slide 12: Commit
	Slide 13: History is a DAG
	Slide 14: Nomenclature: Branch
	Slide 15: A Note on Changing Defaults
	Slide 16: Nomenclature: HEAD
	Slide 17: Nomenclature: HEAD
	Slide 18: View of DAG with Branches
	Slide 19: A “Clean” Repository
	Slide 20: Edit Files in Working Tree
	Slide 21: Edit Files in Working Tree
	Slide 22: Add: Working Tree  Index
	Slide 23: Add: Working Tree  Index
	Slide 24: Commit: Index  Store
	Slide 25: The (New) State of Repository
	Slide 26: Creating a New Branch
	Slide 27: Checkout: Changing Branch
	Slide 28: Checkout: Changing Branch
	Slide 29: Edit Files in Working Tree
	Slide 30: Add & Commit: Update Store
	Slide 31: Merge: Bringing History together
	Slide 32: Merge – Case 1: Ancestor
	Slide 33: Fast-Forward Merge
	Slide 34: Merge – Case 2: No Conflicts
	Slide 35: Merge Automatically Commits
	Slide 36: Merge – Case 3: Conflicts Exist
	Slide 37: Merge: Resolve Conflicts
	Slide 38: Merge with Conflicts: Add
	Slide 39: Merge with Conflicts: Commit
	Slide 40: Merge: Edit to Resolve Conflicts
	Slide 41: Merge: 3-way Merge Editor
	Slide 42: Summary
	Slide 44: Git: Distributed Version Control
	Slide 45: Demo
	Slide 46: What Does "D" Stand For?
	Slide 47: Sarah's Repository
	Slide 48: And Matt's Repository
	Slide 49: Some Shared History
	Slide 50: Fetch: Remote Store  Local
	Slide 51: Remote Repository Unchanged
	Slide 52: Workflow: Merge After Fetch
	Slide 53: Remote Repository Unchanged
	Slide 54: View of DAG with All Branches
	Slide 55: Your Turn
	Slide 56: Sarah and Matt's Repositories
	Slide 57: Some Shared History
	Slide 58: Your Turn: Fetch
	Slide 59: Your Turn: Fetch
	Slide 60: Fetch: After
	Slide 61: Your Turn: Merge
	Slide 62: Your Turn: Merge
	Slide 63: Merge: After
	Slide 64: Demo
	Slide 65: Pull: Fetch then Merge
	Slide 66: Push: Local Store  Remote
	Slide 67: Remote's Branch is Ancestor
	Slide 68: Push: Local Store  Remote
	Slide 69: Push: After
	Slide 70: Commit/Checkout vs Push/Fetch
	Slide 71: Common Topology: Star
	Slide 72: Common Topology: Star
	Slide 73: Summary
	Slide 74: Project Groups: To Do
	Slide 75: Git: Advanced Topics
	Slide 76: Basic Workflow: Overview
	Slide 77: Step 1: Configure Git Locally
	Slide 78: Step 2: Initialize Central Rep
	Slide 79: Step 3: Create Local Repository
	Slide 80: Step 4: Local Development
	Slide 81: Demo
	Slide 82: Your Turn: Playing with Git
	Slide 83: Professional Git
	Slide 84: Commit/Branch Conventions
	Slide 85: Example: Branch-Based Dev
	Slide 86: Example: Trunk-Based Dev
	Slide 87: What Goes Into Central Repo?
	Slide 88: Ignoring Files from Working Tree
	Slide 89: Problem: End-of-line Confusion
	Slide 90: Solution: Normalization
	Slide 91: Normalization With .gitattributes
	Slide 92: Ninja Git: Advanced Moves
	Slide 93: Advanced: Temporary Storage
	Slide 94: Stash: Push Work Onto a Stack
	Slide 95: Stash: Pop Work Off the Stack
	Slide 96: Advanced: Undoing Big Mistakes
	Slide 97: Reset: Discarding Changes
	Slide 98: Reset: Discarding Commits
	Slide 99: Advanced: Undo Small Mistakes
	Slide 100: Advanced: Undo Small Mistakes
	Slide 101: Advanced: Rewriting History
	Slide 102: The Power to Change History
	Slide 103: Advanced: Rewriting History
	Slide 104: Advanced: Rewriting History
	Slide 105: Advanced: Rewriting History
	Slide 106: Advanced: Rewriting History
	Slide 107: Advanced: Rewriting History
	Slide 108: Advanced: Rewriting History
	Slide 109: Commit --amend: Tip Repair
	Slide 110: Commit --amend: Tip Repair
	Slide 111: Advanced: Rewriting History
	Slide 112: Advanced: Rewriting History
	Slide 113: Advanced: Rewriting History
	Slide 114: Advanced: Rewriting History
	Slide 115: Advanced: Rewriting History
	Slide 116: Rebase: DAG Surgery
	Slide 117: Rebase: DAG Surgery
	Slide 118: Git Clients and Hosting Services
	Slide 119: Clarity
	Slide 120: Warning: Academic Misconduct
	Slide 121: Summary

